Browse Publications Technical Papers 2022-01-1009
2022-08-30

Experimental and Numerical Investigation of Hydrogen Jet-Wall Impingement 2022-01-1009

Decarbonization of the automotive industry is one of the major challenges in the transportation sector, according to the recently proposed climate neutrality policies, e.g., the EU 'Fit for 55' package. Hydrogen as a carbon-free energy career is a promising alternative fuel to reduce greenhouse gas emissions. The main objective of the present study is to investigate non-reactive hydrogen jet impingement on a piston bowl profile at different injection angles and under the effect of various pressure ratios (PR), where PR is the relative ratio of injection pressure (IP) to chamber pressure (CP). This study helps to gain further insight into the mixture formation in a heavy-duty hydrogen engine, which is critical in predicting combustion efficiency. In the experimental campaign, a typical high-speed z-type Schlieren method is applied for visualizing the jet from the lateral windows of a constant volume chamber, and two custom codes are developed for post-processing the results. In particular, the jet's major characteristics i.e., penetration, width, and cross-sectional area are calculated at different PRs (25, 10, 5, and 2.5). The results show that higher pressure ratios lead to faster penetration and larger cross-sectional areas of the hydrogen jet. In addition, the jet-piston interaction at different angles as well as the flow around the piston towards the liner and back to the main cylinder volume are studied considering the optimization of mixture formation in the cylinder. By changing the injection angle (10°, 15°, and 20°), jet-piston impingement occurs near the edges, which results in greater hydrogen concentration around those areas, adversely affecting mixture formation. The measurements are further used to validate a numerical model for hydrogen injection and mixing in a similar jet-piston geometry, applying an unsteady Reynolds-averaged Navier-Stokes simulation approach in the commercial software Star-CCM+.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

LPG and Prechamber as Enabler for Highly Performant and Efficient Combustion Processes Under Stoichiometric Conditions

2021-24-0032

View Details

JOURNAL ARTICLE

Multi-Dimensional Modeling of Direct Natural-Gas Injection and Mixture Formation in a Stratified-Charge SI Engine with Centrally Mounted Injector

2008-01-0975

View Details

TECHNICAL PAPER

Investigations on Combustion and Performance Characteristics of a Turbocharged Natural gas and Pilot Ignition Dual Fuel Engine

2005-01-3775

View Details

X