1997-12-31

A Survey of Automotive Catalyst Technologies Using Rapid Aging Test Schedules Which Incorporate Engine Oil Derived Poisons 973050

Automotive catalysts deactivate by thermal and poison mechanisms. Thermal degradation reduces catalyst efficiency by both agglomeration of precious metals and by reduction in surface area of the washcoat. Engine oil derived poisons degrade catalyst performance by coating the outer surface of the washcoat. Numerous catalyst technologies are aged using accelerated dynamometer aging schedules that simulate the thermal and poison degradation of field aged catalysts. Pd, Pd/Rh, Pt/Pd/Rh, and Pt/Rh catalyst technologies are aged and evaluated on various rapid aging test (RATsm) schedules in an effort to ascertain what catalyst technologies may be best for low temperature and high temperature applications. The performance of these catalyst technologies are evaluated on an air/fuel sweep test and a 3.8L auto-driver FTP stand. Results show that the RATsm schedule applies a phosphorus poison distribution (due to engine oil consumption) similar to vehicle aged catalysts.

SAE MOBILUS

Subscribers can view annotate, and download all of SAE's content. Learn More »

Access SAE MOBILUS »

Members save up to 16% off list price.
Login to see discount.
Special Offer: Download multiple Technical Papers each year? TechSelect is a cost-effective subscription option to select and download 12-100 full-text Technical Papers per year. Find more information here.
We also recommend:
TECHNICAL PAPER

Use of Dispersants/Detergents in Diesel Injector Keep Clean and Clean Up Studies

912330

View Details

TECHNICAL PAPER

Metal Supported Catalysts for Automotive Applications

770299

View Details

TECHNICAL PAPER

Scavenger and Lead Poisoning of Automotive Oxidation Catalysts

741062

View Details

X