Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Optimized Engine Accessory Drive Resulting in Vehicle FE Improvement

2008-04-01
2008-01-2761
A belt driven Front End Accessory Drive (FEAD) is used to efficiently supply power to accessory components on automotive engines. The total energy absorbed by the FEAD consists of the accessory component requirements, the belt deformation and friction losses as well as the bearing losses. The accessory component torque requirements provide accessory function such as air conditioning, fluid pumping and electrical power generation. Alternatively, belt related torque losses are a significant parasitic loss, since they do not contribute any useful work. This paper will explain the source of energy loss in FEADs and outline a comprehensive strategy to reduce it. Test results comparing the effect of reduced friction on fuel consumption will be presented as well.
Journal Article

Safety Aspects on a Micro-Hybrid Vehicle with Manual Gearbox

2008-04-14
2008-01-0118
The hazard analysis for the Stop-Start control strategy of a Micro-Hybrid vehicle with manual gearbox is presented. The strategy allows for stops in gear and in neutral; this leads to specific hazards. Implications for the architecture of the electronic control unit, the software architecture, and the development process, especially software testing, are discussed.
Journal Article

Rotary Fatigue Analysis of Forged Magnesium Road Wheels

2008-04-14
2008-01-0211
Fatigue analysis incorporating explicit finite element simulation was conducted on a forged magnesium wheel model where a rotating bend moment was applied to the hub to simulate rotary fatigue testing. Based on wheel fatigue design criteria and a developed fatigue post-processor, the safety factor of fatigue failure was calculated for each finite element. Fatigue failure was verified through experimental testing. Design modifications were proposed by increasing the spoke thickness. Further numerical and experimental testing indicated that the modified design passed the rotary fatigue test.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2008-04-14
2008-01-0725
The SAE FCV Safety Working Group has been addressing fuel cell vehicle (FCV) safety for over 8 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable to FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. J2578 is currently being updated to clarify and update requirements so that it will continue to be relevant and useful in the future. An update to SAE J1766 for post-crash electrical safety was also published to reflect unique aspects of FCVs and to harmonize electrical requirements with international standards. In addition to revising SAE J2578 and J1766, the Working Group is also developing a new Technical Information Report (TIR) for vehicular hydrogen systems (SAE J2579).
Journal Article

Selective Catalytic Reduction for Treating the NOx Emissions from Lean-Burn Gasoline Engines: Durability Assessment

2008-04-14
2008-01-0811
A laboratory study was performed to assess the potential of using selective catalytic reduction (SCR) with NH3 to treat the NOx emissions from lean-burn gasoline engines. A primary concern was the potential for hot rich exhaust conditions on the vehicle, as such conditions could degrade the zeolite-based SCR catalysts being developed for automotive applications. Samples of an iron/zeolite formulation were aged for 34 hours behind samples of a three-way catalyst (TWC) on a pulse-flame combustion reactor using different A/F ratio schedules that exposed the catalysts to either continuously lean operation, mostly stoichiometric operation, or mostly rich operation. For each A/F ratio schedule, separate SCR samples were aged with inlet temperatures of 750°C, 800°C, or 850°C. The aged SCR samples were evaluated for NOx conversion at 25K hr-1 during lean temperature ramps with 500 ppm NO and NH3.
Journal Article

Gasoline Fuel Injector Spray Measurement and Characterization - A New SAE J2715 Recommended Practice

2008-04-14
2008-01-1068
With increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the automotive gasoline fuel spray has become essential. The acquisition of accurate and repeatable spray data is even more critical when a combustion strategy such as gasoline direct injection is to be utilized. Without industry-wide standardization of testing procedures, large variablilities have been experienced in attempts to verify the claimed spray performance values for the Sauter mean diameter, Dv90, tip penetration and cone angle of many types of fuel sprays. A new SAE Recommended Practice document, J2715, has been developed by the SAE Gasoline Fuel Injection Standards Committee (GFISC) and is now available for the measurement and characterization of the fuel sprays from both gasoline direct injection and port fuel injection injectors.
Journal Article

Cross-Section Optimization for Axial and Bending Crushes Using Dual Phase Steels

2008-04-14
2008-01-1125
To achieve optimal axial and bending crush performance using dual phase steels for components designed for crash energy absorption and/or intrusion resistance applications, the cross sections of the components need to be optimized. In this study, Altair HyperMorph™ and HyperStudy® optimization software were used in defining the shape design variables and the optimization problem setup, and non-linear finite element code LS-DYNA® software was used in crush simulations. Correlated crash simulation models were utilized and the square cross-section was selected as the baseline. The optimized cross-sections for bending and axial crush performance resulted in significant mass and cost savings, particularly with the application of dual phase steels.
Journal Article

The Effect of Reducing Compression Ratio on the Work Output and Heat Release Characteristics of a DI Diesel under Cold Start Conditions

2008-04-14
2008-01-1306
An experimental investigation has been carried out to compare the indicated performance and heat release characteristics of a DI diesel engine at compression ratios of 18.4:1 and 15.4:1. The compression ratio was changed by modifying the piston bowl volume; the bore and stroke were unchanged, and the swept volume was nominally 500cc. The engine is a single cylinder variant of modern design which meets Euro 4 emissions requirements. Work output and heat release characteristics for the two compression ratios have been compared at an engine speed of 300 rev/min and test temperatures of 10, -10 and -20°C. A more limited comparison has also been made for higher speeds representative of cold idle at one test temperature (-20°C). The reduction in compression ratio generally produces an increase in peak specific indicated work output at low speeds; this is attributable to a reduction in blowby and heat transfer losses and lower peak rates of heat release increasing cumulative burn.
Journal Article

Detection, Origin and Effect of Ultra-Low Platinum Contamination on Diesel-SCR Catalysts

2008-10-06
2008-01-2488
This paper discusses the poisoning of a selective catalytic reduction (SCR) catalyst by trace levels of platinum originating from an upstream diesel oxidation catalyst (DOC). A diesel aftertreatment system consisting of a DOC, urea based SCR Catalyst and a DPF was aged and evaluated on a 6.4 liter diesel engine dynamometer. The SCR catalyst system consisted of an Fe-zeolite catalyst followed by a Cu-zeolite catalyst. After approximately 400 hours of engine operation at varied exhaust flow rates and temperatures, deactivation of the SCR catalyst was observed. A subsequent detailed investigation revealed that the Cu catalyst was not deactivated and the front half of the Fe-based catalyst showed severe deactivation. The deactivated portion of the catalyst showed high activity of NH3 conversion to NOx and N2O formation. The cause of the deactivation was identified to be the presence of trace Pt contamination.
Journal Article

Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst

2008-10-06
2008-01-2467
Compact heat exchangers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases, resulting in decreased NOx emissions. These exhaust gas recirculation (EGR) coolers experience fouling through deposition of particulate matter (PM) and hydrocarbons (HCs) that reduces the effectiveness of the cooler. Surrogate tubes have been used to investigate the impacts of gas flow rate and coolant temperature on the deposition of PM and HCs. The results indicate that mass deposition is lowest at high flow rates and high coolant temperatures. An oxidation catalyst was investigated and proved to effectively reduce deposition of HCs, but did not reduce overall mass deposition to near-zero levels. Speciation of the deposit HCs showed that a range of HCs from C15 - C25 were deposited and retained in the surrogate tubes.
Journal Article

Diesel EGR Cooler Fouling

2008-10-06
2008-01-2475
The buildup of deposits in EGR coolers causes significant degradation in heat transfer performance, often on the order of 20-30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operating conditions. It is unlikely that EGR cooler deposits can be prevented from forming when soot and HC are present. The presence of cooled surfaces will cause thermophoretic soot deposition and condensation of HC and acids. While this can be affected by engine calibration, it probably cannot be eliminated as long as cooled EGR is required for emission control. It is generally felt that “dry fluffy” soot is less likely to cause major fouling than “heavy wet” soot. An oxidation catalyst in the EGR line can remove HC and has been shown to reduce fouling in some applications. The combination of an oxidation catalyst and a wall-flow filter largely eliminates fouling. Various EGR cooler designs affect details of deposit formation.
Journal Article

The Effect of Hydrocarbons on the Selective Catalyzed Reduction of NOx over Low and High Temperature Catalyst Formulations

2008-04-14
2008-01-1030
Selective Catalytic Reduction of NOx is a promising technology to enable diesel engines to meet certification under Tier 2 Bin 5 emissions requirements. SCR catalysts for vehicle use are typically zeolitic materials known to store both hydrocarbons and ammonia. Ammonia storage on the zeolite has a beneficial effect on NOx conversion; hydrocarbons however, compete with ammonia for storage sites and may also block access to the interior of the zeolites where the bulk of the catalytic processes take place. This paper presents the results of laboratory studies utilizing surrogate hydrocarbon species to simulate engine-out exhaust over catalysts formulated to operate in both low (≈175-500°C) and high temperature (≈250-600°C) regimes. The effects of hydrocarbon exposure of these individual species on the SCR reaction are examined and observations are made as to necessary conditions for the recovery of SCR activity.
Journal Article

Using DCOV Methodology for Virtual Hydrogen Concentration Sensor Development (for use in the fuel cell electric vehicle)

2009-04-20
2009-01-0568
Accounting for more than 90% of the molecules and more than 75% of the mass [1], hydrogen is the most abundant element in the universe. Due to the small molecule size and high buoyancy, it is not available in it’s free form on Earth. In recent years, hydrogen has gained the attention of the automotive industry [2–12] as an environmentally friendly alternative fuel. As a fuel, hydrogen is unique - it is odorless, colorless, tasteless, and burns invisibly in sunlight. Detection solutions such as the odorants used in natural gas are not yet feasible for automotive hydrogen because the available additives can poison the fuel cell catalyst. Additionally, the lower flammability limit of hydrogen is lower, and the flammability range wider, than fuels such as gasoline [13]. Hydrogen detection and its concentration measurement is usually done using hydrogen concentration sensors [13].
Journal Article

Pressure Based Sensing Approach for Front Impacts

2011-04-12
2011-01-1443
This study demonstrates the use of pressure sensing technology to predict the crash severity of frontal impacts. It presents an investigation of the pressure change in the front structural elements (bumper, crush cans, rails) during crash events. A series of subsystem tests were conducted in the laboratory that represent a typical frontal crash development series and provided empirical data to support the analysis of the concept. The pressure signal energy at different sensor mounting locations was studied and design concepts were developed for amplifying the pressure signal. In addition, a pressure signal processing methodology was developed that relies on the analysis of the air flow behavior by normalizing and integrating the pressure changes. The processed signal from the pressure sensor is combined with the restraint control module (RCM) signals to define the crash severity, discriminate between the frontal crash modes and deploy the required restraint devices.
Journal Article

An Advanced and Comprehensive CAE Approach of Piston Dynamics Studies for Piston Optimal and Robust Design

2011-04-12
2011-01-1404
A successful piston design requires eliminate the following failure modes: structure failure, skirt scuffing and piston unusual noise. It also needs to deliver least friction to improve engine fuel economy and performance. Traditional approach of using hardware tests to validate piston design is technically difficult, costly and time consuming. This paper presents an up-front CAE tool and an analytical process that can systematically address these issues in a timely and cost-effectively way. This paper first describes this newly developed CAE process, the 3D virtual modeling and simulation tools used in Ford Motor Company, as well as the piston design factors and boundary conditions. Furthermore, following the definition of the piston design assessment criteria, several piston design studies and applications are discussed, which were used to eliminate skirt scuffing, reduce piston structure dynamic stresses, minimize skirt friction and piston slapping noise.
Journal Article

Vehicle Safety Communications - Applications: System Design & Objective Testing Results

2011-04-12
2011-01-0575
The USDOT and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, GM, Honda, Mercedes, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested communications-based vehicle safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

Vehicle Safety Communications - Applications: Multiple On-Board Equipment Testing

2011-04-12
2011-01-0586
The United States Department of Transportation (USDOT) and the Crash Avoidance Metrics Partnership-Vehicle Safety Communications 2 (CAMP-VSC2) Consortium (Ford, General Motors, Honda, Mercedes-Benz, and Toyota) initiated, in December 2006, a three-year collaborative effort in the area of wireless-based safety applications under the Vehicle Safety Communications-Applications (VSC-A) Project. The VSC-A Project developed and tested Vehicle-to-Vehicle (V2V) communications-based safety systems to determine if Dedicated Short Range Communications (DSRC) at 5.9 GHz, in combination with vehicle positioning, would improve upon autonomous vehicle-based safety systems and/or enable new communications-based safety applications.
Journal Article

Pulley Optimization for Improved Steering Pump Airborne Noise Performance

2011-05-17
2011-01-1568
This paper discusses the optimization of an automotive hydraulic steering pump pulley design for improved in-vehicle pump NVH performance. Levels of steering pump whine noise heard inside a vehicle were deemed objectionable. Vehicle and component transfer path analyses indicated that the dominant noise path for the whine noise was airborne in nature. Subsequent experimental modal analysis indicated that the steering pump pulley was a major contributor to the amount of radiated noise produced by the pump/pulley system. CAE analysis was used to further analyze the dynamic behavior of the pulley and develop an optimized design with decreased noise radiation efficiency. The results predicted with the CAE analysis were verified in-vehicle, resulting in a vehicle with acceptable steering pump whine noise performance.
Journal Article

Motor Vehicle PM Emissions Measurement at LEV III Levels

2011-04-12
2011-01-0623
This paper examines the issues concerning particulate matter (PM) emissions measurement at the 3 mg/mi level proposed as the future LEV III standard. These issues are general in nature, but are exacerbated at the low levels contemplated for upcoming emissions standards. They are discussed in the context of gasoline direct injection (GDI) engines, where they can have an important impact on the continued development of this technology for improved fuel economy. GDI particulate emissions, just as engine-out diesel PM, contain a high fraction of soot. But the total PM mass is significantly lower than from diesel engines, and there can be significant variations in emissions rate and apparent PM composition between cold-start and running emissions. PM emissions levels depend on sampling method and location. As a result, there can be substantial differences in PM sampled and diluted directly at the exhaust pipe, as opposed to measurements from a dilution tunnel.
Journal Article

Test Correlation Framework for Hybrid Electric Vehicle System Model

2011-04-12
2011-01-0881
A hybrid electric vehicle (HEV) system model, which directly simulates vehicle drive cycles with interactions among driver, environment, vehicle hardware and vehicle controls, is a critical CAE tool used through out the product development process to project HEV fuel economy (FE) capabilities. The accuracy of the model is essential and directly influences the HEV hardware designs and technology decisions. This ultimately impacts HEV product content and cost. Therefore, improving HEV system model accuracy and establishing high-level model-test correlation are imperative. This paper presents a Parameter Diagram (P-Diagram) based model-test correlation framework which covers all areas contributing to potential model simulation vs. vehicle test differences. The paper describes each area in detail and the methods of characterizing the influences as well as the correlation metrics.
X