Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 264
Technical Paper
2014-04-01
Rupesh Sonu Kakade
We propose a composite thermal model of the vehicle passenger compartment that can be used to predict and analyze thermal comfort of the occupants of a vehicle. Physical model is developed using heat flow in and out of the passenger compartment space, comprised of glasses, roof, seats, dashboard, etc. Use of a model under a wide variety of test conditions have shown high sensitivity of compartment air temperature to changes in the outside air temperature, solar heat load, temperature and mass flow of duct outlet air from the climate control system of a vehicle. Use of this model has subsequently reduced empiricism and extensive experimental tests for design and tuning of the automatic climate control system. Simulation of the model allowed several changes to the designs well before the prototype hardware is available. In addition to the reduced vehicle field tests and wind tunnel tests man hours and the cost associated with them, simulation of the model allowed for the greater potential benefits of increased accuracy and optimized heating and cooling of the passenger compartment to be achieved.
Training / Education
2011-11-04
Gery Kissel
SAE J1772 - Electric Vehicle and Plug-in Hybrid Electric Vehicle Conductive Charge Coupler is the first standard in the world reached by industry consensus that provides critical guidelines for safety, charging control and connectors used to charge plug in vehicles. Paving the way for an EV future, the standard accommodates the latest generation of vehicles that need to be plugged in for charging their high-energy batteries. This course will uncover the details behind the SAE J1772 conductive charging interface. It will discuss overall plug-in vehicle charge strategy, electrical safety strategy, electrical and physical interface requirements and control strategy.
Technical Paper
2010-04-12
David Antanaitis, Mark Riefe, Joel Sanford
During the automotive brake system design and development process, a large number of performance characteristics must be comprehended, assessed, and balanced against each other and, at times, competing performance objectives for the vehicle under development. One area in brake development that is critical to customer acceptance due to its impact on a vehicle's perceived quality is brake pedal feel. While a number of papers have focused on the specification, quantification and modeling of brake pedal feel and the various subsystem characteristics that affect it, few papers have focused specifically on brake corner hoses and their effect on pedal feel, in particular, during race-track conditions. Specifically, the effects of brake hose fluid consumption pedal travel and brake system response is not well comprehended during the brake development process. This paper introduces the basic construction of automotive brake hoses, the test methodologies and test results used to quantify brake hose fluid consumption under various operating conditions, and it illustrates the influence of hose performance at the vehicle-level using simple analyses on an example race track-capable sports car.
Technical Paper
2010-04-12
David B. Antanaitis
Brake caliper and corner behavior in the off-brake condition can lead, at times, to brake system performance issues such as residual drag (and related issues such as pulsation, judder, and loss of fuel economy), and caliper pryback during aggressive driving maneuvers. The dynamics in the brake corner can be strikingly complex, with numerous friction interfaces, rubber component and grease dynamics, deflections of multiple components, and significant dependence on usage conditions. Displacements of moving parts are usually small, and the residual forces in the caliper interfaces involved are also small in comparison with other forces acting on the same components, making direct observation very difficult. The present work attempts to illuminate off-brake behavior in two different conditions - residual drag and pryback - through the use of low-range pressure distribution sensors placed in between the caliper (pistons and fingers) and the brake pad pressure plates. Data from multiple sources, including dynamometer, straight-line in-vehicle, and hard cornering are presented and methods of analysis are discussed.
Technical Paper
2010-04-12
Omar Dessouki, Brent Lowe, Mark Riefe
Over the last five years, the automotive industry has experienced a trend towards niche performance vehicles equipped with high-output powertrains. These high performance vehicles also demand higher output braking systems. One method used to provide enhanced pedal feel and fade performance is to equip vehicles with higher apparent friction linings. The challenge then becomes how to design and manufacture these brake systems without high-frequency disc brake squeal and without paying a significant mass penalty. One alternative is to design disc brake rotors with increased damping. There are several options for increasing rotor damping. The classical approach is to increase the rotor's cast iron carbon content, thus increasing the internal material damping of the rotor. However, this methodology provides only a small increase in rotor damping. Alternatively, the rotor damping can be increased by introducing friction, sometimes referred to as Coulomb damping. This paper describes two different rotor designs that utilize friction damping.
Technical Paper
2010-04-12
Brian McClory, Wai Nguyen, Christof Heisser
Casting, machining and structural simulations were completed on a V8 engine block made in Compacted Graphite Iron (CGI) for use in a racing application. The casting and machining simulations generated maps of predicted tensile strength and residual stress in the block. These strength and stress maps were exported to a finite element structural model of the machined part. Assembly and operating loads were applied, and stresses due to these loads were determined. High cycle fatigue analysis was completed, and three sets of safety factors were calculated using the following conditions: uniform properties and no residual stress, predicted properties and no residual stress, and predicted properties plus residual stress.
Technical Paper
2010-04-12
Tameem Assaf, David Mathews, Sanjeev Naik
Misfire diagnostics are required to detect missed combustion events which may cause an increase in emissions and a reduction in performance and fuel economy. If the misfire detection system is based on crankshaft speed measurement, driveline torque variations due to rough road can hinder the diagnosis of misfire. A common method of rough road detection uses the ABS (Anti-Lock Braking System) module to process wheel speed sensor data. This leads to multiple integration issues including complexities in interacting with multiple suppliers, inapplicability in certain markets and lower reliability of wheel speed sensors. This paper describes novel rough road detection concepts based on signal processing and statistical analysis without using wheel speed sensors. These include engine crankshaft and Transmission Output Speed (TOS) sensing information. Algorithms that combine adaptive signal processing and specific statistical analysis of this information are presented. Vehicle test results are shown to demonstrate the efficacy of these techniques to distinguish between rough road, smooth road, and misfire.
Technical Paper
2010-04-12
Hanho Yun, Jun-Mo Kang, Man-Feng Chang, Paul Najt
Homogenous Charge Compression Ignition (HCCI) combustion offers significant efficiency improvements compared to conventional gasoline engines. However, due to the nature of HCCI combustion, traditional HCCI engines show some degree of sensitivity to in-cylinder thermal conditions; thus higher cylinder-to-cylinder variation was observed especially at low load and high load operating conditions due to different injector characteristics, different amount of reforming as well as non-uniform EGR distribution. To address these issues, a cylinder balancing control strategy was developed for a multi-cylinder engine. In particular, the cylinder balancing control strategy balances CA50 and AF ratio at high load and low load conditions, respectively. Combustion noise was significantly reduced at high load while combustion stability was improved at low load with the cylinder balancing control.
Technical Paper
2010-04-12
Tejinder Singh, Richard Olenzek
General Motors introduced a family of small front wheel drive six speed automatic transmissions for the 2008 model year. The family currently has two variants: 6T40 and 6T45, which cover a range of vehicles from small & compact cars to small SUVs and handle engines torque capacities up to 240 Nm Gas(280 Nm Diesel) & 315 Nm Gas (380 Nm Diesel) respectively. The 6T40/45 transmissions replace GM traditional four speed automatic wrap around transmissions 4T40/45. The wrap around transmissions have Torque Converter, Pump & Controls on the engine axis and the rest of the transmission content on the output axis. The 6T40/45 have an on-axis architecture with majority of the transmission content on the engine axis and final drive & differential on the output axis. The 4T40/45 have input chain transfer whereas the 6T40/45 have an output chain transfer. The objectives behind the creation of the 6T40/45 transmissions were improved fuel economy, performance, mass and NVH as compared to the transmissions they replaced.
Technical Paper
2010-04-12
David A. Wagner, Stephen Logan, Kangping Wang, Timothy Skszek
Finite element analysis (FEA) predictions of magnesium beams are compared to load versus displacement test measurements. The beams are made from AM60B die castings, AM30 extrusions and AZ31 sheet. The sheet and die cast beams are built up from two top hat sections joined with toughened epoxy adhesive and structural rivets. LS-DYNA material model MAT_124 predicts the magnesium behavior over a range of strain rates and accommodates different responses in tension and compression. Material test results and FEA experience set the strain to failure limits in the FEA predictions. The boundary conditions in the FEA models closely mimic the loading and constraint conditions in the component testing. Results from quasi-static four-point bend, quasi-static axial compression and high-speed axial compression tests of magnesium beams show the beam's behavior over a range of loadings and test rates. The magnesium beams exhibit significant material cracking and splitting in all the tests. LS-DYNA explicit FEA predictions of the tests agree to differing degrees with the test results.
Technical Paper
2010-04-12
Jafar Albinmousa, Adrian Pascu, Hamid Jahed, M.F. Horstemeyer, Alan Luo, D. Chen, Steve Lambert, J. Jordon, S. Begum, Xuming Su, Q.Q. Duan, Richard Osborne, Z. Zhang, Lin Zhang, T. Luo, Yuansheng Yang
Magnesium alloys are the lightest structural metal and recently attention has been focused on using them for structural automotive components. Fatigue and durability studies are essential in the design of these load-bearing components. In 2006, a large multinational research effort, Magnesium Front End Research & Development (MFERD), was launched involving researchers from Canada, China and the US. The MFERD project is intended to investigate the applicability of Mg alloys as lightweight materials for automotive body structures. The participating institutions in fatigue and durability studies were the University of Waterloo and Ryerson University from Canada, Institute of Metal Research (IMR) from China, and Mississippi State University, Westmorland, General Motors Corporation, Ford Motor Company and Chrysler Group LLC from the United States. This paper presents the results of benchmark coupon testing that were obtained for monotonic and cyclic conditions on extruded AM30 alloy samples.
Technical Paper
2010-04-12
Alan A. Luo, Joy Forsmark, Xichen Sun, Scott Shook
Magnesium alloy extrusions offer potentially more mass saving compared to magnesium castings. One of the tasks in the United States Automotive Materials Partnership (USAMP) ?Magnesium Front End Research and Development? (MFERD) project is to evaluate magnesium extrusion alloys AM30, AZ31 and AZ61 for automotive body applications. Solid and hollow sections were made by lowcost direct extrusion process. Mechanical properties in tension and compression were tested in extrusion, transverse and 45 degree directions. The tensile properties of the extrusion alloys in the extrusion direction are generally higher than those of conventional die cast alloys. However, significant tension-compression asymmetry and plastic anisotropy need to be understood and captured in the component design. The thermophysical properties, thermal diffusivity, density, specific heat and thermal conductivity, of AM30 and AZ61 alloys were measured from room temperature (RT) to 425°C for numerical simulation of the extrusion processes.
Technical Paper
2010-04-12
Zheng Ma
Engine cylinder deactivation is used to save engine pumping loss but raises oil consumption concerns for the deactivated cylinders. In this paper, general mechanisms of oil transport via piston rings are reviewed. The characteristic of oil transport and oil accumulation in a cylinder deactivation mode through the piston ring path are analyzed. Suggestions to reduce the oil transport to the combustion chamber in a deactivated cylinder are discussed. In a deactivated cylinder, the amount of oil brought into the combustion chamber by the top ring up-scraping due to the ring/bore conformability difference between intake stroke and compression stroke is much less compared to a firing cylinder. However, compared to a firing cylinder, a deactivated cylinder has more oil entering the combustion chamber through the top ring end gap and ring groove as a result of the lower cylinder gas pressure, lower ring temperature and more frequent top ring axial movements. Suggestions are given to reduce the net upward oil transport in a deactivated cylinder, including reducing the ring/groove clearances and the sizes of the ring gaps and drain-holes, reducing cylinder bore distortion, designing structures of the piston-lands and the oil drain-holes to enhance downward oil flow and restrict upward oil flow, reducing or eliminating positive static twist of the top ring, and limiting the overall oil supply from the bottom of the piston.
Technical Paper
2010-04-12
Jyh-Shin Chen
Fully Flexible Valve Actuation (FFVA) systems provide maximum flexibility to adjust lift profiles of engine intake and exhaust valves. A research grade electro-hydraulic servo valve based FFVA system was designed to be used with an engine in a test cell to precisely follow desired lift profiles. Repetitive control was chosen as the control strategy. Crank angle instead of time is used to trigger execution to ensure repeatability. A single control is used for different engine speeds even though the period for one revolution changes with engine speeds. The paper also discusses lift profile extension, instantaneous lift profile switching capability and built-in safety features.
Technical Paper
2010-04-12
Prakash H. Desai, Mohammad Anwar, Sean Gleason, Shawn Hawkins
General Motors has developed a portfolio of advanced propulsion vehicles that has set the standard for optimal fuel economy in full-size utility vehicles. An overview of power electronics used in this portfolio, already available in the market, is presented. These components are key enablers for the strategic products in portfolio. Block diagrams for various configurations are also described to show common power electronics components used in traction and auxiliary systems. Briefly real wheel drive (RWD) and front wheel drive (FWD) vehicle applications are described. Specific analysis and test results are presented from development of Traction Power Inverter used in RWD vehicles. Vehicle-based durability profiles are used in analysis to predict IGBT power modules thermal performance. Using key metrics for volume and mass, benchmarking data is also presented.
Technical Paper
2010-04-12
Marcello Canova, Fabio Chiara, Giorgio Rizzoni, Yue-Yun Wang
Two-stage turbochargers are a recent solution to improve engine performance, reducing the turbo-lag phenomenon and improving the matching. However, the definition of the control system is particularly complex, as the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization. This work documents a characterization study of two-stage turbocharger systems. The study relies on a mean-value model of a Diesel engine equipped with a two-stage turbocharger, validated on experimental data. The turbocharger is characterized by a VGT actuator and a bypass valve (BPV), both located on the high-pressure turbine. This model structure is representative of a “virtual engine”, which can be effectively utilized for applications related to analysis and control. Using this tool, a complete characterization was conducted considering key operating conditions representative of FTP driving cycle operations. The influence of VGT and BPV on the most significant engine variables and on the operating points of the two compressors was evaluated for different engine torque and speed conditions.
Article
2009-02-26
In a money-saving move, General Motors has decided that it will not "at this time" build a new engine plant for Chevrolet's Volt and Cruze models. The company announced Feb. 24 that instead of carrying out its previously announced plans for a new plant in Flint, MI, it will use extra capacity at an existing Flint plant.
Article
2009-02-06
Knowing that an appropriate electrical power infrastructure is necessary for the success of its Chevrolet Volt, General Motors Corp. announced Feb. 3 that it will work with communities around the country to ensure that there will be plenty of charging stations for its plug-in hybrid vehicle when it goes to market next year.
Technical Paper
2008-04-14
Michael J. Haldenwanger, Antonio Antonucci, Gerald A. Cooper, William A. Malopolski, Jennifer L. Sevigny, James P. White, Jack K. Yee
A study was conducted by General Motors at its crash test facility located at the Milford Proving Ground. The intent of this study was to expand upon the currently available research regarding the safety belt buckle environment during full scale planar crash tests. Buckle accelerations and webbing tensions were measured and recorded to characterize, in part, buckle responses in a crash environment. Previous studies have focused primarily on the component level testing of safety belt buckles. The crash tests included a variety of vehicles, impact types, seating positions, Anthropomorphic Test Devices (ATDs), impact speeds, and impact angles. Also included were various safety belt restraint systems and pretensioner designs. This study reports on data recorded from 100 full scale crash tests with 180 instrumented end release safety belt buckles. Acceleration measurements were obtained with tri-axial accelerometers mounted onto the buckles. The accelerations were recorded in the axial, lateral, and perpendicular axes relative to the buckle.
Technical Paper
2008-04-14
Robert G. Altman, David O. Stalnaker, David L. Howland, James A. Popio, null
In the work leading to the TREAD Act, some members of Congress expressed the need for some type of aging test on light vehicle tires. Since no industry-wide recommended practice existed, the ASTM F09.30 Aged Tire Durability task group was established in 2002 to develop a scientifically valid, short duration, laboratory aged tire durability test which correlates to in-service aging. The target end-of-test condition was belt edge separation (or related tire conditions). One strategy, driven by that objective, has been a Steady State DOE investigating aging temperature and duration, as well as, roadwheel speed, pressure and deflection. Testing was performed on three tire types, including two where relevant field aging data was publicly available from NHTSA studies. A region of interest, within the design space, was identified where target end-of-test conditions were possible and undesirable (non-target or non-representative of those seen in consumer use) were avoided. A specific test condition has been proposed and carried forward for validation over a broad cross-section of tires sizes.
Technical Paper
2008-04-14
Robert G. Altman, David O. Stalnaker, David L. Howland, James A. Popio
In response to the TREAD act of 2002, ASTM F09.30 Aged Tire Durability Task Group was formed with the objective of developing a scientifically valid, short duration, laboratory aged tire durability test which correlates to field behavior. The target end-of-test condition was belt edge separation (or related damage). Two strategies have been investigated, aged stepped-up load and steady state DOE. Results of the two strategies are compared and contrasted and a test condition from the steady state DOE has been identified as the preferred direction for further validation.
Technical Paper
2008-04-14
Robert G Altman, David O. Stalnaker, David L. Howland, James A. Popio
In response to the TREAD act of 2002, ASTM F09.30 Aged Tire Durability Task Group was formed with the objective of developing a scientifically valid, short duration aged durability test which correlates to field behavior. The target end-of-test condition was belt edge separation (or related damage). One strategy, driven by that objective, has been a steady state design of experiment investigating aging temperature and duration as well as roadwheel speed, pressure and deflection. The rationale behind investigating a steady state test and selecting these parameters and methodology for setting their initial values is reviewed.
Technical Paper
2007-10-29
Roy Fewkes, Angela Willis
As a result of raised awareness regarding the proliferation of individual OEM recommended ATFs, and discussion in various forums regarding the possibility of ‘universal’ service fill fluids, it was decided to study how divergent individual OEM requirements actually are by comparing the fluids performance in industry standard tests. A bench-mark study was carried out to compare the performance of various OEM automatic transmission fluids in selected industry standard tests. All of the fluids evaluated in the study are used by certain OEMs for both factory and service fill. The areas evaluated included friction durability, oxidation resistance, viscosity stability, aeration and foam control. The results of this study are discussed in this paper. Based on the results, one can conclude that each ATF is uniquely formulated to specific OEM requirements. In addition, the results show that a customer should not deviate from the automatic transmission fluid specified in the vehicle's owners manual.
Technical Paper
2007-04-16
Jeff Gress, Siguang Xu, Ramesh Joshi, Chuan-Tao Wang, Sabu Paul
Since 1997, General Motors Body Manufacturing Engineering - Die Engineering Services (BME-DES) has been working jointly with our software vendor to develop and implement a parallel version of stamping simulation software for mass production analysis applications. The evolution of this technology and the insight gained through the implementation of DMP/MPP technology as well as performance benchmarks are discussed in this publication.
Technical Paper
2007-04-16
David Staley, Bryan Pryor, Karl Gilgenbach
Variable valve actuation has become a very popular feature in today's engines. With many of these systems being hydraulically actuated, the engine lubrication system requires enhancement to support their function. To expand the system's operational range with respect to speed and temperature, a traditional solution has been to increase oil pressure by increasing pump displacement. To better optimize the system, a variable displacement vane pump has been adapted to the engine lube oil system. Based on existing transmission pump technology, a pivoting cam ring design is employed that is able to vary the pump's displacement as a function of pump regulating oil pressure which in-turn provides a net reduction in its drive torque. While others have addressed this issue using complex and expensive pressure regulating systems, this passive solution requires no valves or additional hardware.
Technical Paper
2007-04-16
Bridget M. O'Brien-Mitchell, Christopher K. Horn, Robert C. Lange
Although rollover crashes represent a small fraction (approximately 3%) of all motor vehicle crashes, they account for roughly one quarter of crash fatalities to occupants of cars, light trucks, and vans (NHTSA Traffic Safety Facts, 2004). Therefore, the National Highway Traffic Safety Administration (NHTSA) has identified rollover injuries as one of its safety priorities. Motor vehicle manufacturers are developing technologies to reduce the risk of injury associated with rollover collisions. This paper describes the development by General Motors Corporation (GM) of a suite of laboratory tests that can be used to develop sensors that can deploy occupant protection devices like roof rail side air bags and pretensioners in a rollover as well as a discussion of the challenges of conducting this suite of tests.
Technical Paper
2007-04-16
Thomas Cherian, Max Farhad, Jason Wong, Xuting Wu
A methodology involving Design for Six Sigma (DFSS) and Multi-body dynamic simulation is employed to tune a body-on-frame vehicle, for improved ride (shake) performance. The design space is limited to four sets of symmetric body mounts for a vehicle. The stiffness and damping characteristics of the mounts are the control factors in the virtual experiment. Variation of these design parameters from the nominal settings, as well as axle size, tire and wheel combinations, tire pressure, shock damping, and vehicle speed constitute the noise factors. This approach proves to be an excellent predictor of the vehicle behavior, by which much insight as to influence of each parameter on vehicle performance is gained. Ultimately, specific recommendations for the control factor settings are provided. Subsequent hardware builds show excellent agreement with the analytical model and suggested tuning. More importantly, this methodology is effective in providing valuable insight through numerous parameter studies, completely prohibitive in the hardware environment due to high cost, long time, commitment and lack of ability to change parameters in a decoupled way.
Technical Paper
2006-10-16
Brent Calcut, Roy Fewkes
A detailed description of the oxidative stability of GM's DEXRON®-VI Factory Fill Automatic Transmission Fluid (ATF) is provided, which can be integrated into a working algorithm to estimate the end of useful oxidative life of the fluid. As described previously, an algorithm to determine the end of useful life of an automatic transmission fluid exists and is composed of two simultaneous counters, one monitoring bulk oxidation and the other monitoring friction degradation [1]. When either the bulk oxidation model or the friction model reach the specified limit, a signal can be triggered to alert the driver that an ATF change is required. The data presented in this report can be used to develop the bulk oxidation model. The bulk oxidation model is built from a large series of bench oxidation tests. These data can also be used independent of a vehicle to show the relative oxidation resistance of this fluid, at various temperatures, compared to other common lubricants.
Technical Paper
2006-10-16
Roy Fewkes, Brent Calcut, Angela Willis
During early 2005 General Motors released a newly developed ATF for the factory fill of all GM Powertrain stepped gear automatic transmissions. The new fluid provided significantly improved performance in terms of friction durability, viscosity stability, aeration and foam control and oxidation resistance. In addition, the fluid has the potential to enable improved fuel economy and extended drain intervals. Since the performance of the new fluid far exceeded that of the DEXRON®-III service fill fluids available at the time it became necessary to upgrade the DEXRON® service fill specification in order to ensure that similar fluids were available in the market for service and repair situations. This latest upgrade to the service fill specification is designated DEXRON®-VI [1].
Technical Paper
2006-04-03
R. Augusta, David E. Foster, J. B. Ghandhi, J. Eng, P. M. Najt
A spectroscopic diagnostic system was designed to study the effects of different engine parameters on the chemiluminescence characteristic of HCCI combustion. The engine parameters studied in this work were intake temperature, fuel delivery method, fueling rate (load), air-fuel ratio, and the effect of partial fuel reforming due to intake charge preheating. At each data point, a set of time-resolved spectra were obtained along with the cylinder pressure and exhaust emissions data. It was determined that different engine parameters affect the ignition timing of HCCI combustion without altering the reaction pathways of the fuel after the combustion has started. The chemiluminescence spectra of HCCI combustion appear as several distinct peaks corresponding to emission from CHO, HCHO, CH, and OH superimposed on top of a CO-O continuum. A strong correlation was found between the chemiluminescence light intensity and the rate of heat release.
Viewing 1 to 30 of 264

Filter

  • Range:
    to:
  • Year: