Criteria

Text:
Affiliation:
Display:

Results

Viewing 1 to 30 of 78
Technical Paper
2014-04-01
Shogo Nakao, Masafumi Shimozawa, Yasuo Sugure
Abstract “Virtual Failure Mode and Effects Analysis” (vFMEA), a novel safety-verification method of control software for automotive electronic systems, was proposed to save prototyping cost at verification stage. The proposed vFMEA is system-level FMEA method, which uses virtualized electronic control units (ECUs) consisting of microcontroller models on a microcontroller simulator and a transistor-level circuit models on a circuit simulator. By using the structure, the control software in binary code formats can be verified when a circuit-level fault occurs in the ECU hardware. As an illustrative example, vFMEA was applied to an engine ECU. As a result of short-circuit fault into a driver IC, engine revolution and engine speed decreased. However, the engine continued to operate normally when an open-circuit fault occurred in a capacitor connected in parallel. Effects of the hardware faults in ECU on a vehicle are demonstrated; thereby software verification can be performed using vFMEA system.
Technical Paper
2014-04-01
Yoshihiro Sukegawa, Kengo Kumano, Kenichiro Ogata
Abstract A technique of estimating particulate matter (PM) from gasoline direct injection engines is proposed that is used to compute mass density and particle number density of PM by using fuel mass in rich mixtures obtained by using non-combustion computational fluid dynamics (CFD). The CFD code that was developed by the authors employed a Cartesian coordinates system as a discretization method and large eddy simulation (LES) as a turbulence model. Fuel spray droplets were treated with the discrete droplet model (DDM). The code was verified with some experimental data such as those obtained from in-cylinder gas-flows with a laser Doppler velocimeter (LDV) and in-cylinder fuel concentration with laser induced fluorescence (LIF). PM emissions from a single-cylinder gasoline direct injection engine were measured with an electrical low pressure impactor (ELPI) to determine the model constants that were required in the estimation model. We confirmed that the technique could be applied to various engine operating conditions and fuel spray patterns.
Technical Paper
2014-04-01
Kengo Kumano, Shiro Yamaoka
Abstract The cooled EGR system has been focused on as a method for knocking suppression in gasoline engines. In this paper, the effect of cooled EGR on knocking suppression that leads to lower fuel consumption is investigated in a turbo-charged gasoline engine. First, the cooled EGR effect is estimated by combustion simulation with a knock prediction model. It shows that the ignition timing at the knocking limit can be advanced by about 1 [deg. CA] per 1% of EGR ratio, combustion phasing (50% heat release timing) at the knocking limit can be advanced by about 0.5 [deg. CA] per 1% of EGR ratio, and the fuel consumption amount can be decreased by about 0.4% per 1% of EGR ratio. Second, the effect of cooled EGR is verified in an experimental approach. By adding inert gas (N2/CO2) as simulated EGR gas upstream of the intake pipe, the effect of EGR is investigated when EGR gas and fresh air are mixed homogeneously. As a result, the ignition timing at the knocking limit is advanced by 7 [deg.
Technical Paper
2014-04-01
Kenichiro Ogata
The robustness control for homogeneous charge compression ignition (HCCI) using a crank angle sensor and a knock sensor has been estimated. On the other hand, an ion current sensor is used as a countermeasure against abnormal combustion with downsized and higher compression ratio engines. This sensor can generally be adopted in engine systems. Therefore, we examined the application of an ion current sensor to robustness control for HCCI. The purpose of this research was to develop a method of detecting combustion conditions to make HCCI engines more robust. Therefore, we evaluated the performance of the ion current sensor. Experimental results comparing ion intensity detection in HCCI. The detection value of the ion current sensor changed based on the form of combustion. Experimental results showed that the heat release rate increased with an increase in ion signals appear during the same time at approximately in both spark ignition (SI) and HCCI. It was assumed that ion signals appearing during the main combustion period.
Technical Paper
2014-04-01
Yoshihito Yasukawa, Yoshio Okamoto, Nobuaki Kobayashi, Takahiro Saito, Masayuki Saruwatari
Abstract The authors developed a multi-swirl type injector characterized by a short spray penetration length and fine atomization to improve exhaust emissions and fuel consumption for port fuel injection (PFI) gasoline engines. In PFI gasoline engines, fuel adhesion to an intake manifold causes exhaust emission. In addition, good mixing of fuel and air causes high combustion efficiency, and as a result the fuel consumption improves. Injectors therefore require two improvements: first, a short spray penetration to avoid fuel adhesion to the intake manifold, and second, a fine atomization spray to generate a good mixture formation of fuel and air. In this study, the authors developed a multi-swirl type injector equipped with multiple orifice holes featuring swirl chambers upstream of each orifice. The key feature of the proposed injector is “involute curve-formed swirl chambers” for generating a uniform thin liquid-film in the orifices. The authors performed experiments to obtain the Sauter mean diameter (SMD) of spray, a perspective image, and a magnified liquid-film image for multi-swirl type and multi-hole type injectors.
Technical Paper
2014-04-01
Ryo Kusakabe, Motoyuki Abe, Hideharu Ehara, Tohru Ishikawa, Takuya Mayuzumi, Takao Miyake
We have achieved injection quantity range enhancement by using the current waveform control technique for direct injection (DI) gasoline injectors. In this study, we developed an injection quantity simulator to find out the mechanism of non-linear characteristics. We clarified the non-linear production mechanism by using the simulator. This simulator is a one-dimensional simulator that incorporates calculation results from both unsteady electromagnetic field analysis and hydraulic flow analysis into the motion equation of this simulation code. We investigated the relation between armature and the injection quantity by using the simulator. As a result, we clarified that the non-linearity was produced by the bounce of the armature in the opening action. Thus, we found that it is effective to reduce the armature bounce to improve the linearity of the injection quantity characteristics. To reduce the bounce of the valve, we devised a current waveform control technique that includes a current cut-off part just after the armature launching.
Technical Paper
2014-04-01
Satoshi Otsuka, Tasuku Ishigooka, Yukihiko Oishi, Kazuyoshi Sasazawa
Abstract In-vehicle networks are generally used for computerized control and connecting information technology devices in cars. However, increasing connectivity also increases security risks. “Spoofing attacks”, in which an adversary infiltrates the controller area network (CAN) with malicious data and makes the car behave abnormally, have been reported. Therefore, countermeasures against this type of attack are needed. Modifying legacy electronic control units (ECUs) will affect development costs and reliability because in-vehicle networks have already been developed for most vehicles. Current countermeasures, such as authentication, require modification of legacy ECUs. On the other hand, anomaly detection methods may result in misdetection due to the difficulty in setting an appropriate threshold. Evaluating a reception cycle of data can be used to simply detect spoofing attacks. However, this may result in false detection due to fluctuation in the data reception cycle in the CAN. We propose the “delayed-decision cycle detection” method for improving a conventional cycle detection method, which does not require modification of legacy ECUs, detects intrusions with a low misdetection rate, and prevents intrusions.
Technical Paper
2013-09-08
Atsushi Shimada, Takao Ishikawa
The internal combustion engines waste large amounts of heat energy, which account for 60% of the fuel energy. If this heat energy could be converted to the output power of engines, their thermal efficiency could be improved. The thermal efficiency of the Otto cycle increases as the compression ratio and the ratio of specific heat increase. If high octane number fuel is used in engines, their thermal efficiency could be improved. Moreover, thermal efficiency could be improved further if fuel could be combusted in dilute condition. Therefore, exhaust heat recovery, high compression combustion, and lean combustion are important methods of improving the thermal efficiency of SI engines. These three methods could be combined by using hydrous ethanol as fuel. Exhaust heat can be recovered by the steam reforming of hydrous ethanol. The reformed gas including hydrogen can be combusted in dilute condition. In addition, it is cooled by directly injecting hydrous ethanol into the engine. In other words, it is possible to burn at a high compression ratio.
Technical Paper
2013-05-13
Akira Inoue, Yosuke Tanabe, Masanori Watanabe
A pioneering approach to implement transfer path analysis (TPA) is proposed in this paper through applying it to an automobile. We propose to use particle velocity as a measure of TPA, in addition to using sound pressure as a conventional measure for TPA. These two quantities together will give a comprehensive and complete definition of sound. Although sound pressure is a scalar, while particle velocity is a vector, it is also proposed that the same technique of the conventional sound pressure TPA should be independently applicable to each component of particle velocity vector. This has been experimentally verified with a study on our test box system. In this paper, we apply the proposed TPA to an actual vehicle to examine its applicability, advantages and limitations. The driving motor sound of a hybrid electric vehicle is chosen as the case study. A tri-axial particle velocity sensor which also measures sound pressure at the same point is utilized in the experiment. Both structure-borne and air-borne sound paths are considered, and a miniature shaker and a volume velocity source are employed for the frequency response function measurement, respectively.
Technical Paper
2013-04-08
Masahiro Matsubara, Kohei Sakurai, Fumio Narisawa, Masushi Enshoiwa, Yoshio Yamane, Hisamitsu Yamanaka
To detect difficult-to-find defects in automotive control systems, we have proposed a modeling method with a program slicing technique. In this method, a verifier adjusts the boundaries of source code to be extracted on a variable dependence graph, in a kind of data flow. We have developed software tools for this method and achieved a 35% decrease in total verification time on model checking. This paper provides some consideration on effective cases of the method from verification practices. There are two types of malfunction causes: one is the timing of processes (race conditions), and the other is complex logics. Each type requires different elements in external environment models. Furthermore, we propose regression verification based on the modeling method above, to further reduce verification time on model checking. The paper outlines tool extensions needed to realize regression verification.
Technical Paper
2013-04-08
Motoyuki Abe, Ehara Hideharu, Soma Masahiro, Tohru Ishikawa
We investigated the size of fuel spray droplets from nozzles for direct injection gasoline (DIG) engines. Our findings showed that the droplet size can be predicted by referencing the geometry of the nozzle. In a DIG engine, which is used as part of a system to reduce fuel consumption, the injector nozzle causes the fuel to spray directly into the combustion chamber. It is important that this fuel spray avoid adhesion to the chamber wall, so multi-hole injection nozzles are used to obtain spray shape adaptability. It is also important that spray droplets be finely atomized to achieve fast vaporization. We have developed a method to predict the atomization level of nozzles for fine atomization nozzle design. The multi-hole nozzle used in a typical DIG injector has a thin fuel passage upstream of the orifice hole. This thin passage affects the droplet size, and predicting the droplet size is quite difficult if using only the orifice diameter. We therefore fabricated several multi-hole nozzles with different thin passage areas and hole diameters.
Technical Paper
2013-04-08
Kunihiko Suzuki, Seiji Asano
The purpose of this study is to develop model-based methodologies which employ thermo-fluid dynamic engine simulation and multiple-objective optimization schemes for engine control and calibration, and to validate the reliability of the method using a dynamometer test. In our technique, creating a total engine system model begins by first entirely capturing the characteristics of the components affecting the engine system's behavior, then using experimental data to strictly adjust the tuning parameters in physical models. Engine outputs over the full range of engine operation conditions as determined by design of experiment (DOE) are simulated, followed by fitting the provided dataset using a nonlinear response surface model (RSM) to express the causal relationship among engine operational parameters, environmental factors and engine output. The RSM is applied to an L-jetronic® air-intake system control logic for a turbocharged engine. Coupling the engine simulator with a multi-objective genetic algorithm, the optimal valve timings are investigated from the viewpoints of fuel consumption rate, emissions, and torque.
Technical Paper
2012-04-16
Shinji Nakagawa, Eisaku Fukuchi, Akihito Numata
A new diagnosis method for an air-fuel ratio cylinder imbalance has been developed. The developed diagnosis method is composed of two parts. The first part detects an occurrence of an air-fuel ratio cylinder imbalance by using a two revolution frequency component of an EGO sensor output signal or an UEGO sensor output signal upstream from a catalyst. The two revolution frequency component is from a cycle where an engine rotates twice. The second part of the diagnosis method detects an increase of emissions by using a low frequency component which is calculated from the output of an EGO sensor downstream from the catalyst. When the two revolution frequency component calculated using the upstream sensor output is larger than a certain level and the low frequency component calculated using the downstream sensor output is shifted to a leaner range, the diagnosis judges that the emissions increase is due to an air-fuel ratio cylinder imbalance. The experimental results using a test car showed that the diagnosis detected NOx emissions increasing by 1.5 times.
Technical Paper
2011-10-06
Kunihiko Suzuki, Seiji Asano
We have developed a model-based control for the air intake system in a variable valve engine, employing total engine simulation, the response surface method and multi-objective optimization scheme. In our technique, we performed the simulation model tuning and validation, followed by the creation of a dataset for the polynomial regression analysis of the charging efficiency. A D-optimal design, robust least squares method, and likelihood-ratio test were demonstrated to yield a robust and accurate control model. Coupling the total engine simulator with a genetic algorithm, model based calibration for optimal valve timing stored in lookup table was carried out under multiple objectives and restrictions. The reliability of the implementation control model, which considers the effect of gas dynamics in the intake system, was confirmed using a model-in-the-loop simulation.
Technical Paper
2011-05-17
Takaharu Ishida
Electric vehicle will come into wide use in worldwide with the arrival of the Low-carbon society in the next twenty years. And total capacity of the battery on the electric vehicle in the power system network amounts for several Giga Watts, which corresponds to the capacity of several nuclear power plants. It is difficult for power system operator to forecast of the amount of the charging power because there is much uncertainty of using power on electric vehicles compared to the electric facility like air conditioner and so on. In order to operate the power system network stable, it is necessary for power system operator to control charging power of electric vehicle independently as controllable facilities. We propose a “Smart Charging” concept based on the index for the security monitoring of power system network which makes power system operation more efficiently and makes electric vehicle owners more conveniently. A load dispatch system, like distribution energy management systems or community energy management systems can take care of the voltage control considering the charging schedule of the electric vehicle's owner in advance and the result of power system state estimation or load flow calculation.
Technical Paper
2010-04-12
Atsushi Shimada, Takao Ishikawa, Shuichi Kajitani
Hydrogen produced from regenerative sources has the potential to be a sustainable substitute for fossil fuels. A hydrogen internal combustion engine has good combustion characteristics, such as higher flame propagation velocity, shorter quenching distance, and higher thermal conductivity compared with hydrocarbon fuel. However, storing hydrogen is problematic since the energy density is low. Hydrogen can be chemically stored as a hydrocarbon fuel. In particular, an organic hydride can easily generate hydrogen through use of a catalyst. Additionally, it has an advantage in hydrogen transportation due to its liquid form at room temperature and pressure. We examined the application of an organic hydride in a spark ignition (SI) engine. We used methylcyclohexane (MCH) as an organic hydride from which hydrogen and toluene (TOL) can be reformed. First, the theoretical thermal efficiency was examined when hydrogen and TOL were supplied to an SI engine. Next, we conducted an experiment on an SI engine fueled with hydrogen and gasoline to investigate the characteristics of hydrogen mixed combustion.
Technical Paper
2010-04-12
Takashi Yoshizawa, Yoko Tsukada, Shinji Seto, Kenji Hiraku, Yasuhiro Sato, Jun Soeda
In response to the growing demand for fuel economy, we are developing a high-efficient variable displacement pump for hydraulic power steering systems. In order to develop a quiet variable displacement pump which generates lower noise for better vehicle interior sound quality, we have been developing a simulation tool which includes hydraulic analysis, vibration analysis, and vehicle interior noise analysis which combines simulation outputs and measured noise transfer functions of the targeted vehicle. This paper provides both validation results of the simulation tool and application examples to design improvement to conclude the effectiveness of the simulation tool developed.
Technical Paper
2009-04-20
Shinji Nakagawa, Takanobu Ichihara, Kouzou Katogi, Kazuhiko Kanetoshi, Minoru Oosuga
Emission regulations continue to be strengthened, and it is important to decrease cold start hydrocarbon concentrations in order to meet them, now and in the future. The HC concentration in engine exhaust gas is reduced by controlling the air-fuel ratio to the low HC range and retarding the ignition timing as much as possible until the engine stability reaches a certain deterioration level. Conventionally however, the target air-fuel ratio has been set at a richer range than the low HC range and the target ignition timing has been more advanced than the engine stability limit, in order to stabilize the engine for various disturbances. As a result, the HC concentration has not been minimized. To solve this problem, a new engine control has been developed. This control uses a crank angle sensor to simultaneously control the air-fuel ratio and the ignition timing so that the HC concentration can be minimized. The experimental results show the HC accumulated in the first 20 seconds after the engine start was reduced by up to 37%.
Technical Paper
2009-04-20
Yasuo Sugure, Shigeru Oho, Sujit S. Phatak, George Saikalis
We have developed a full virtual engine system prototyping platform with 4-cylinder engine plant model, SH-2A CPU hardware model, and object code level software including OSEK OS. The virtual engine system prototyping platform can run simulation of an engine control system and digital knock detection system including 64-pt FFT computations that provide required high-resolution DSP capability for detection and control. To help the system design, debugging, and evaluation, the virtual system prototyping consists of behavior analyzer which can provide the visualization of useful CPU internal information for control algorithm tuning, RTOS optimization, and CPU architecture development. Thus the co-simulation enables time and cost saving at validation stage as validation can be performed at the design stage before production of actual components.
Technical Paper
2009-04-20
Kunihiko Suzuki, Mamoru Nemoto
Model-based methodologies for the engine calibration process, employing engine cycle simulation and polynomial regression analysis, have been developed and the reliability of the proposed method was confirmed by validating the model predictions with dynamometer test data. From the results, it was clear that the predictions by the engine cycle simulation with a knock model, which considers the two-stage hydrocarbon ignition characteristics of gasoline, were in good agreement with the dynamometer test data if the model tuning parameters were strictly adjusted. Physical model tuning and validation were done, followed by the creation of a dataset for the regression analysis of charging efficiency, EGR mass, and MBT using a 4th order polynomial equation. The stepwise method was demonstrated to yield a logarithm likelihood ratio and its false probability at each term in the polynomial equation. The use of false acceptance probability enables an informed decision to be made with regard to the tradeoff between polynomial equation size and goodness of fit.
Technical Paper
2008-06-23
Shinichi Takemura, Shunichi Aoyama, Seinosuke Hara, Makoto Nakamura
A new variable valve event and lift (VVEL) system has been developed by applying a multiple-link mechanism. This VVEL system can continuously vary the valve event angle and lift over a wide range from an exceptional small event angle and small lift and to a large event angle and large lift. This capability offers the potential to improve fuel economy, power output, emissions and other parameters of engine performance. The valve lift characteristics obtained with the VVEL system consist of a synthesis of the oscillatory motion characteristics of the multiple-link mechanism and the oscillating cam profile. With the multiple-link mechanism, the angular velocity of the oscillating cams varies during valve lift, but the valve lift characteristics incorporate both gentle ramp sections and sharp lift sections, the same as a conventional engine. This paper describes the mechanical features of the multiple-link VVEL system and performance levels attained, based on simulation data obtained at the stage of conceptualizing the fundamental principle of the system and at the stage of validating a prototype system.
Technical Paper
2008-04-14
Shinji Nakagawa, Takanobu Ichihara, Kouzou Katogi, Kazuhiko Kanetoshi, Minoru Oosuga
Emission regulations continue to be strengthened, and it is important to decrease cold start hydrocarbon concentrations in order to meet them, now and in the future. The HC concentration in engine exhaust gas can be reduced by optimizing the air-fuel ratio. However, a conventional air-fuel ratio feedback control does not operate for the first ten seconds after the engine has started because the air-fuel ratio sensor has not yet been activated. In this paper, we report on a study to optimize the air-fuel ratio using a crank angle sensor until the air-fuel ratio sensor has been activated. A difference in fuel properties was used as a typical disturbance factor. The control was applied to both a direct-injection engine (DI) and a port-injection engine (MPI). It was evaluated for two fuel types: one which evaporates easily and one which does not. The experimental results show the air-fuel ratio is optimized for both types of fuel. The HC accumulated in the first 20 seconds after the engines start is reduced by 23% in the DI engine, and by 35% in the MPI engine.
Technical Paper
2008-04-14
Shinya Satou, Shinji Nakagawa, Hiromu Kakuya, Toshimichi Minowa, Mamoru Nemoto, Hitoshi Konno
In recent years, integrated vehicle control systems have been developed to improve fuel economy and safety. As a result, engine control is shifting to torque-based systems for throttle / fuel / ignition control, to realize an engine torque demand from the system. This paper describes torque-based engine control technologies for SI (Spark Ignition) engine to improve torque control accuracy using a feedback control algorithm and an airflow sensor.
Technical Paper
2008-04-14
Akira Nishioka, Kiyoshi Amou, Hiroshi Yokota, Teruhiko Murakami
A new urea-dosing device with an active-ammonia production function was developed. This function is achieved by an electrically heated bypass passage with a hydrolysis catalyst for urea-to-ammonia conversion. The new device also has the function of mixing ammonia and exhaust gas. It is compact and has low-pressure loss by using the vortex occurring at the back of a static vane. We built a trial device for a small diesel engine and obtained steady state and transient data. The heated-bypass concept can be used in the aftertreatment system of passenger cars. Although active-ammonia production consumes electric power, a predictive calculation of power consumption (based on experimental results) shows that the developed bypass heater can suppress the energy consumption enough not to harm the high-energy efficiency of diesel engines.
Technical Paper
2008-04-14
Hiroki Hosoe, Masahiro Sakanushi, Kimihiro Tokushima, Tadao Nishiyama, Shogo Konya, Masayuki Kasuya, Masato Kaneeda, Hidehiro Iizuka
This paper presents a new substrate for Lean NOx Traps (LNT) which enables high NOx conversion efficiency, even after long-term aging, when using alkali metals as the NOx adsorber. When a conventional metal honeycomb is used as the LNT substrate, the chromium in the metal substrate migrates into the washcoat and reacts with the alkali metals after thermal aging. In order to help prevent this migration, we have developed a new substrate where a fine -alumina barrier is precipitated to the surface of the metal substrate. The new substrate is highly capable of preventing migration of chromium into the washcoat and greatly enhances the NOx conversion. The durability of the new substrate and emission test using a test vehicle are also examined.
Technical Paper
2008-04-14
Kohei Sakurai, Masahiro Matsubara, Masatoshi Hoshino
Balancing between dependability and cost-effectiveness is essential to promote X-by-Wire systems in the next decade. To achieve this goal, we have so far proposed a network centric architecture based on a concept of autonomous decentralized systems, where if one node fails, the remaining normal nodes autonomously execute a backup control to maintain the system's functionality, as well as a membership middleware indispensable to this architecture to ensure the consistency of the node status information among all nodes. In this work, we implemented membership middleware on a hardware and software platform equivalent to one assumed to be used in actual X-by-Wire systems. This paper describes the implementation details and performance evaluation result, and shows that membership middleware and a real-time critical application can coexist within one microcontroller.
Technical Paper
2008-04-14
Hiroshi Sakamoto, Masato Imai, Kazutoshi Tsuchiya, Tatsuya Yoshida, Masao Sakata
We have developed a system for automatic deceleration upon entering curves to prevent collisions on tight curves on high-ways. The navigation system is used to determine safe speed negotiating the curve, defined as a speed that will keep lateral acceleration within a settled value. The navigation system sends the curve radius to a controller, which calculates the safe speed for the curve. The controller then sends the speed command to the ACC system, which adjusts the vehicle speed. One of the important features in this system is the estimation of the vehicle position, in terms of its distance from the curve entrance. Navigation systems have a certain amount of dispersion in positional accuracy. A front camera is used in our system to decrease this dispersion. This camera detects lane markers (white lines, raised pavement markers, etc.) using our line recognition technologies1). The change in the curve radius is detected by the lateral displacement of the markers to estimate the position of the curve entrance.
Technical Paper
2007-10-29
Kunihiko Suzuki, Mamoru Nemoto, Kenichi Machida
The increasing number of controllable parameters in modern engine systems has led to increasingly complicated and enlarged engine control software. This in turn has created dramatic increases in software development time and cost. Model-based control design seems to be an effective way to reduce development time and costs and also to enable engineers to understand the complex relationship between the many controllable parameters and engine performance. In the present study, we have developed model-based methodologies for the engine calibration process, employing engine cycle simulation and regression analysis. The reliability of the proposed method was investigated by validating the regression model predictions with measured data. From the results it was clear that the engine cycle simulation, which was tuned using both measured and predicted data obtained from more detailed models that consider intake and exhaust pipe flow, was useful enough to alternate with calibration bench testing.
Technical Paper
2007-04-16
Akihiko Hyodo, Fumio Arakawa, Naoki Kato
The concept of a “controller grid”, which makes effective use of computational resources distributed on a network while guaranteeing real-time operation, is proposed and applied to realize highly advanced control. It facilitates the total optimization of a plant control and achieves the high efficiency that is not acquired by individual plant optimization. To realize this concept, migration of a control task customized to be executed on one particular microcontroller to another microcontroller is necessary while strictly observing the required response time. Two techniques to meet this requirement are proposed: “task migration” for a control system and “real-time guaranteed scheduling of task migration and execution”. The effectiveness of the controller grid is assessed by applying it in experiments with electronic-throttle-body (ETB) advanced control.
Technical Paper
2007-04-16
Makoto Ishikawa, D. J. McCune, George Saikalis, Shigeru Oho
This paper proposes a new development method for highly reliable real-time embedded control systems using a CPU model-based hardware/software co-simulation. We take an approach that allows the full simulation of the virtual mechanical control system including CPU and object code level software. In this paper, Renesas SH-2A microcontroller model was developed on CoMET™ platform from VaST Systems Technology. A ETC (Electronic Throttle Control) system and engine control system were chosen to prove this concept. The ETB (Electronic Throttle Body) model on Saber® simulator from Synopsys® or engine model on MATLAB®/Simulink® simulator from MathWorks can be simulated with the SH-2A model. To help the system design, debug and evaluation, we developed an integrated behavior analyzer, which can display CPU behavior graphically during the simulation without affecting the simulation result, such as task level CPU load, interrupt statistics, software variable transition chart, and so on. The software has not been modified for this virtual system analysis.
Viewing 1 to 30 of 78

Filter

  • Range:
    to:
  • Year: