Refine Your Search

Topic

Author

Search Results

Technical Paper

Research on Reduction of Piston Vibration by Providing Granular Dampers Inside the Lattice Structure

2023-05-08
2023-01-1149
A high compression ratio is an effective means for improving the thermal efficiency of an internal combustion engines. However, a high compression ratio leads to a rapid rise in the combustion pressure, as it causes a high impulse force. The impulse force generates vibrations and noise by spreading in the engine. Therefore, reducing the vibration of the combustion (which increases as the compression ratio increases) can improve the thermal efficiency while using the same technology. We are conducting model-based research on technologies for reducing combustion vibration by applying a granular damper to a piston. To efficiently reduce the vibration, we suppress it directly with the piston, i.e., the source of the vibration. Thus, the damping effect is maximized within a minimized countermeasure range.
Technical Paper

Droplet Behaviors of DI Gasoline Wall Impinging Spray by Spray Slicer

2020-04-14
2020-01-1152
Owing to the small size of engines and high injection pressures, it is difficult to avoid the fuel spray impingement on the combustion cylinder wall and piston head in Direct Injection Spark Ignition (DISI) engine, which is a possible source of hydrocarbons and soot emission. As a result, the droplets size and distribution are significantly important to evaluate the atomization and predict the impingement behaviors, such as stick, spread or splash. However, the microscopic behaviors of droplets are seldom reported due to the high density of small droplets, especially under high pressure conditions. In order to solve this problem, a “spray slicer” was designed to cut the spray before impingement as a sheet one to observe the droplets clearly. The experiment was performed in a constant volume chamber under non-evaporation condition, and a mini-sac injector with single hole was used.
Technical Paper

Modeling of the Rotary Engine Apex Seal Lubrication

2015-09-01
2015-01-2035
The Wankel rotary engine is more compact than conventional piston engines, but its oil and fuel consumption must be reduced to satisfy emission standards and customer expectations. A key step toward this goal is to develop a better understanding of the apex seal lubrication to reduce oil injection while reducing friction and maintaining adequate wear. This paper presents an apex seal dynamics model capable of estimating relative wear and predicting friction, by modeling the gas and oil flows at the seal interfaces with the rotor housing and groove flanks. Model predictions show that a thin oil film can reduce wear and friction, but to a limited extent as the apex seal running face profile is sharp due to the engine kinematics.
Journal Article

Diesel Combustion Noise Reduction by Controlling Piston Vibration

2015-04-14
2015-01-1667
It has been required recently that diesel engines for passenger cars meet various requirements, such as low noise, low fuel consumption, low emissions and high power. The key to improve the noise is to reduce a combustion noise known as “Diesel knock noise”. Conventional approaches to reduce the diesel knock are decreasing combustion excitation force due to pilot/pre fuel injection, adding ribs to engine blocks or improving noise transfer characteristics by using insulation covers. However, these approaches have negative effects, such as deterioration in fuel economy and increase in cost/weight. Therefore, modification of engine structures is required to reduce it. We analyzed noise transfer paths from a piston, a connecting rod, a crank shaft to an engine block and vibration behavior during engine operation experimentally, and identified that piston resonance was a noise source.
Journal Article

A Numerical Study on Detailed Soot Formation Processes in Diesel Combustion

2014-10-13
2014-01-2566
This study simulates soot formation processes in diesel combustion using a large eddy simulation (LES) model, based on a one-equation subgrid turbulent kinetic energy model. This approach was implemented in the KIVA4 code, and used to model diesel spray combustion within a constant volume chamber. The combustion model uses a direct integration approach with a fast explicit ordinary differential equation (ODE) solver, and is additionally parallelized using OpenMP. The soot mass production within each computation cell was determined using a phenomenological soot formation model developed by Waseda University. This model was combined with the LES code mentioned above, and included the following important steps: particle inception during which acenaphthylene (A2R5) grows irreversibly to form soot; surface growth with driven by reactions with C2H2; surface oxidation by OH radical and O2 attack; and particle coagulation.
Technical Paper

Numerical Simulation on Soot Formation in Diesel Combustion by Using a CFD Code Combined with a Parallelized Explicit ODE Solver

2014-10-13
2014-01-2567
The objective of the present study is to analyze soot formation in diesel engine combustion by using multi-dimensional combustion simulations with a parallelized explicit ODE solver. Parallelized CHEMEQ2 was used to perform detailed chemical kinetics in KIVA-4 code. CHEMEQ2 is an explicit stiff ODE solver developed by Mott et al. which is known to be faster than traditional implicit ODE solvers, e.g., DVODE. In the present study, about eight times faster computation was achieved with CHEMEQ2 compared to DVODE when using a single thread. Further, by parallelizing CHEMEQ2 using OpenMP, the simulations could be run not only on calculation servers but also on desktop machines. The computation time decreases with the number of threads used. The parallelized CHEMEQ2 enabled combustion and emission characteristics, including detailed soot formation processes, to be predicted using KIVA-4 code with detailed chemical kinetics without the need for reducing the reaction mechanism.
Journal Article

Oil Transport Cycle Model for Rotary Engine Oil Seals

2014-04-01
2014-01-1664
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. A model of the oil seals is developed to calculate internal oil consumption (oil leakage from the crankcase through the oil seals) as a function of engine geometry and operating conditions. The deformation of the oil seals trying to conform to housing distortion is calculated to balance spring force, O-ring and groove friction, and asperity contact and hydrodynamic pressure at the interface. A control volume approach is used to track the oil over a cycle on the seals, the rotor and the housing as the seals are moving following the eccentric rotation of the rotor. The dominant cause of internal oil consumption is the non-conformability of the oil seals to the housing distortion generating net outward scraping, particularly next to the intake and exhaust port where the housing distortion valleys are deep and narrow.
Journal Article

Visualization of the Rotary Engine Oil Transport Mechanisms

2014-04-01
2014-01-1665
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. In order to better understand oil transport, a laser induced fluorescence technique is used to visualize oil motion on the side of the rotor during engine operation. Oil transport from both metered oil and internal oil is observed. Starting from inside, oil accumulates in the rotor land during inward motion of the rotor created by its eccentric motion. Oil seals are then scraping the oil outward due to seal-housing clearance asymmetry between inward and outward motion. Cut-off seal does not provide an additional barrier to internal oil consumption. Internal oil then mixes with metered oil brought to the side of the rotor by gas leakage. Oil is finally pushed outward by centrifugal force, passes the side seals, and is thrown off in the combustion chamber.
Journal Article

Effect of Spray/Wall Interaction on Diesel Combustion and Soot Formation in Two-Dimensional Piston Cavity

2013-10-15
2013-32-9021
The effects of spray/wall interaction on diesel combustion and soot formation in a two-dimensional piston cavity were studied with a high speed color video camera in a constant volume combustion vessel. The two-dimensional piston cavity was applied to generate the impinging spray flame. In the cavity, the flat surface which plays a role as the cylinder head has a 13.5 degree angle with the injector axis and the impinging point was located 30 mm away from the nozzle tip. Three injection pressures of 100, 150, and 200 MPa and a single hole diesel injector (hole diameter: 0.133mm) were selected. The flame structure and combustion process were examined by using the color luminosity images. Two-color pyrometry was used to measure the line-of sight soot temperature and concentration by using the R and B channels of the color images. The soot mass generated by impinging spray flame is higher than that of the free spray flame.
Technical Paper

Fuel Spray Combustion of Waste Cooking Oil and Palm Oil Biodiesel: Direct Photography and Detailed Chemical Kinetics

2013-10-14
2013-01-2554
This paper studies the ignition processes of two biodiesel from two different feedstock sources, namely waste cooked oil (WCO) and palm oil (PO). They were investigated using the direct photography through high-speed video observations and detailed chemical kinetics. The detailed chemical kinetics modeling was carried out to complement data acquired using the high-speed video observations. For the high-speed video observations, an image intensifier combined with OH* filter connected to a high-speed video camera was used to obtain OH* chemiluminscence image near 313 nm. The OH* images were used to obtain the experimental ignition delay of the biodiesel fuels. For the high-speed video observations, experiments were done at an injection pressure of 100, 200 and 300 MPa using a 0.16 mm injector nozzle.
Journal Article

A Study on Design Factors of Gas Pedal Operation

2012-04-16
2012-01-0073
Lateral distance from the center of a driver's seating position to the gas and brake pedals is one of the main design factors that relates to the ease of stepping on the pedals from one and the other. It is important to keep a certain distance between the pedals to prevent erroneous operations or to reduce the driver's anxiety. In this paper, we explain that the distance between the pedals is affected by the driver's seating height. In other words, if the driver sits lower, the accuracy of stepping on the pedals from the gas pedal to the brake pedal will increase compared to the higher seating position. In addition, we found out that providing auxiliary parts for the leg support enhances the accuracy of the pedal operations.
Journal Article

Unsteady Vehicle Aerodynamics during a Dynamic Steering Action: 2nd Report, Numerical Analysis

2012-04-16
2012-01-0448
Unsteady aerodynamic forces acting on vehicles during a dynamic steering action were investigated by numerical simulation, with a special focus on the vehicles' yaw and lateral motions. Two sedan-type vehicles with slightly different geometries at the front pillar, side skirt, under cover, and around the front wheel were adopted for comparison. In the first report, surface pressure on the body and total pressure behind the front wheel were measured in an on-road experiment. Then the relationships between the vehicles' lateral dynamic motion and unsteady aerodynamic characteristics during cornering motions were discussed. In this second report, the vehicles' meandering motions observed in on-road measurements were modeled numerically, and sinusoidal motions of lateral, yaw, and slip angles were imposed. The responding yaw moment was phase averaged, and its phase shift against the imposed slip angle was measured to assess the aerodynamic damping.
Technical Paper

A General Method of Life Cycle Assessment

2012-04-16
2012-01-0649
In previous Life Cycle Assessment (LCA) methods, environmental burden items to be analyzed, prior to a life cycle inventory analysis, were assumed as the main factors of environmental problems regardless of the product category. Next, the life cycle inventory analysis, in which the total amount of environmental burden items emitted during the life cycle of a product was calculated, and an environmental impact assessment were performed. The environmental impact assessment was based on the initially assumed environmental burden items. The process, in other words, was a particular solution based on this assumption. A general solution unconstrained by this assumption was necessary. The purpose of this study was to develop a general method of LCA that did not require such initially assumed environmental burden items, and to make it possible to perform a comprehensive environmental impact assessment and strategically reduce environmental burden of a product.
Technical Paper

Thermal Fluid Analysis By a Mesh Free Simulation - Part 2 Analysis of the Indoor Climate in a Vehicle Cabin Based on the 3D-CAD Model

2011-10-06
2011-28-0136
The thermal fluid field in a vehicle cabin model is analyzed by the mesh free method as well as mentioned in the Part 1. This paper focuses on the steady state indoor climate in the vehicle cabin including the effect of the buoyancy, the heat generation of the driver and heat conduction through the vehicle body surface under the maximum air-cooling condition soaked in a climate chamber in the summer condition for the demonstration of the mesh free method without not only the deformation of the 3D-CAD model but mesh generation. The solar radiation distribution and heat generation through the exhaust pipe from the engine room are simply included in the analysis. Simulated results are compared with experiments in the conditions of both moving and idling states. As a result, no significant difference in air temperature between simulation and experiments can be obtained in both conditions.
Technical Paper

Thermal Fluid Analysis by a Mesh Free Simulation - Part 1 Analysis of the Thermal Fluid Field in a Headlamp Based on the Real 3D-CAD Model

2011-10-06
2011-28-0135
The thermal fluid field in a headlamp based on the real 3D-CAD model is analyzed by a mesh free method. The conducted method is a new CFD (Computational Fluid Dynamics) solver based on the couples of the points whose density is controlled scattered in the analysis space including the boundaries, which leads to much reduce the hand-working time in the deformation of the 3D-CAD model for the mesh generation. This paper focuses on the steady state airflow field in a headlamp under the conditions of natural ventilation including the effect of the buoyancy and the heat generation of the lamp surface for the demonstration of the conducted method without not only the deformation of the real 3D-CAD model but mesh generation. The differences of the pressure outlet conditions and heat generation of the headlamp on the amount of the ventilation are also experimented.
Journal Article

Combustion Technology Development for a High Compression Ratio SI Engine

2011-08-30
2011-01-1871
Internal combustion engines still play a vital role in realizing the low carbon society. For spark ignition engines, further improvement in thermal efficiency can be achieved by increasing both compression and specific heat ratios. In the current work, the authors developed practical technologies to prevent output power loss due to knocking at full load, which is a critical issue for increasing compression ratio. These new technologies allowed to increase the compression ratio significantly and provide an equivalent torque level as a conventional engine. As a result, thermal efficiency has been improved at partial load.
Technical Paper

A Study on Improvement of Indicated Thermal Efficiency of ICE Using High Compression Ratio and Reduction of Cooling Loss

2011-08-30
2011-01-1872
Improvement of indicated thermal efficiency of internal combustion engines is required, and increasing the compression ratio is an effective solution. In this study, using a CAE analysis coupling a 0-dimensional combustion analysis and a 1-dimensional heat conduction analysis, the influence of compression ratio on indicated thermal efficiency and combustion was investigated. As a result, it was found that there was an optimal compression ratio that gave the best indicated thermal efficiency, because the increase of cooling loss caused by high compression was bigger than the increase of theoretical indicated thermal efficiency in some cases. Next, the influence of cooling loss reduction on the optimal compression ratio was investigated. It was found that indicated thermal efficiency improved by reducing cooling loss, because the compression ratio which made the best indicated thermal efficiency was shifted to higher compression ratio.
Technical Paper

Visualization Study on Lubricant Oil Film Behavior around Piston Skirt

2011-08-30
2011-01-2119
Understanding of the oil film formation mechanism around a piston skirt is very important to reduce the friction loss at piston skirt. We have investigated lubricant oil film behavior around piston skirt which is affected by piston slap under motoring condition. In this study, a cylinder liner of a commercial engine is displaced with a quartz cylinder. Photographic observations of oil film behavior between the cylinder liner and the piston skirt were performed with two kinds of methods; direct monochromatic photography and LIF (Laser Induced Fluorescence) image using a high speed camera. The oil film distributions were determined from oil boundary observed by the direct photography, and oil film thickness was estimated from the LIF intensity. Differences of the oil film distributions and the oil film thickness depending on piston shapes were investigated for four types of pistons.
Technical Paper

New Methodology of Life Cycle Assessment for Clean Energy Vehicle and New Car Model

2011-04-12
2011-01-0851
Mazda announced that all customers who purchase Mazda cars are provided with the joy of driving and excellent environmental and safety performance under slogan of "Sustainable Zoom-Zoom" long-term vision for technology development. The purpose of this study is to develop a new approach of Life Cycle Assessment (abbreviated to LCA) to be applied to clean energy vehicles and new car models. The improvement of both environmental performance, e.g., fuel consumption, exhaust emissions, vehicle weight reduction, and LCA that is a useful methodology to assess the environmental load of automobiles for their lifecycles has become more important. LCA by inventory analysis, for RX-8 Hydrogen RE as a rotary engine vehicle used hydrogen as clean energy, was carried out and disclosed the world for the first time. LCA for new Mazda 5 was carried out as the portfolio of all models, previously only the specific model equipped with fuel efficiency device based on ISO14040.
Technical Paper

Ventilation Characteristics of Modeled Compact Car Part 3 Airflow Velocity Distribution with Foot Mode

2010-04-12
2010-01-1065
Following the previous reports, ventilation characteristics in automobile was investigated by using a half-scale car model which was created by the Society of Automotive Engineers of Japan (JSAE). In the present study, the ventilation mode of the cabin was foot mode which was the ventilation method for using in winter season. Supplied air was blown from the supply openings under the dashboard to the rear of the model via the driver's foot region in this mode. The experiment was performed in order to obtain accurate data about the airflow properties equipped with particle image velocimetry (PIV). Our experimental data is to be shared as a standard model to assess the environment within automobiles. The data is also for use in computational fluid dynamics (CFD) benchmark tests in the development of automobile air conditioning, which enables high accuracy prediction of the interior environment of automobiles.
X