Viewing 1 to 3 of 3
Technical Paper
Deepak Gangadharan, Oleg Sokolsky, Insup Lee, BaekGyu Kim, Chung-Wei Lin, Shinichi Shiraishi
Abstract Optional software-based features (for example, to provide active safety, infotainment, etc.) are increasingly becoming a significant cost driver in automotive systems. In state-of-the-art production techniques, these optional features are built into the vehicle during assembly. This does not give the customer the flexibility to choose the specific set of features as per their requirement. They either have to buy a pre-bundled option that may or may not satisfy their preferences or are unable to find an exact combination of features from the inventory provided by a dealership. Alternatively, they have to pre-order a car from the manufacturer, which could result in a substantial delay. Therefore, it is important to improve the flexibility of delivering the optional features to customers. Towards this objective, the vehicle could be configured with the desired options at the dealership, when the customer requires them.
Technical Paper
Venk Kandadai, Helen Loeb, Guyrandy Jean-Gilles, Catherine McDonald, Andrew Winston, Thomas Seacrist, Flaura Winston
Abstract Driving simulators offer a safe alternative to on-road driving for the evaluation of driving performance. Standardized procedures for providing individualized feedback on driving performance are not readily available. The aim of this paper is to describe a methodology for developing standardized procedures that provide individualized feedback (“LiveMetrics”) from a simulated driving assessment used to measure driving performance. A preliminary evaluation is presented to test the performance of the LiveMetrics methodology. Three key performance indicators are used to evaluate the performance and utility of the method in the context of the preliminary evaluation. The results from the preliminary evaluation suggest abilities to customize reporting features for feedback and integrate these into existing driver training and education programs.
Technical Paper
Michael Prange, David F. Meaney
No regional or directional large-deformation constitutive data for brain exist in the current literature. To address this deficiency, the large strain (up to 50%) directional properties of gray and white matter were determined in the thalamus, corona radiata, and corpus callosum. The constitutive relationships of all regions and directions are well fit by an Ogden hyperelastic relationship, modified to include dissipation. The material parameter α, representing the non-linearity of the tissue, was not significantly sensitive to region, direction, or species. The average value of the material parameter µ, corresponding to the shear modulus of the tissue, was significantly different for each region, demonstrating that brain tissue is inhomogeneous. In each region, µ, obtained in 2 orthogonal directions, was compared. Consistent with local neuroarchitecture, gray matter showed the least amount of anisotropy and corpus callosum exhibited the greatest degree of anisotropy.
Viewing 1 to 3 of 3