Criteria

Text:
Topic:
Display:

Results

Viewing 211 to 240 of 39469
2014-04-01
Technical Paper
2014-01-0806
Shweta Rawat, Soumya Kanta Das
Abstract With the ever increasing emphasis on vehicle occupant safety, the safety of pedestrians is getting obscured behind the A-pillars that are expanding in order to meet the federal roof crush standards. The serious issue of pillar blind spots poses threats to the pedestrians who easily disappear from driver's field of view. To recognize this blinding danger and design the car around the driver's eye, this paper proposes the implementation of Aluminum Oxynitride marked under name AlON by Surmet Corporation for fabrication of A-pillars that can allow more than 80% visibility through them. AlON is a polycrystalline ceramic with cubic spinel crystal structure and is composed of aluminum, oxygen and nitrogen. With hardness more than 85% than sapphire, its applications range from aerospace to defense purposes which qualify it in terms of strength and thus imply that it can be conveniently used as A-pillars in vehicles.
2014-04-01
Technical Paper
2014-01-0811
Horst Lanzerath, Niels Pasligh
Abstract Structural adhesives are widely used across the automotive industry for several reasons like scale-up of structural performance and enabling multi-material and lightweight designs. Development engineers know in general about the effects of adding adhesive to a spot-welded structure, but they want to quantify the benefit of adding adhesives on weight reduction or structural performance. A very efficient way is to do that by applying analytical tools. But, in most of the relevant non-linear load cases the classical lightweight theory can only help to get a basic understanding of the mechanics. For more complex load cases like full car crash simulations, the Finite Element Method (FEM) with explicit time integration is being applied to the vehicle development process. In order to understand the benefit of adding adhesives to a body structure upfront, new FEM simulation tools need to be established, which must be predictive and efficient.
2014-04-01
Technical Paper
2014-01-0812
Kyoo Sil Choi, Xiaohua Hu, Xin Sun, Mark Taylor, Emmanuel De Moor, John Speer, David Matlock
Abstract In this paper, a two-dimensional microstructure-based finite element modeling method is adopted to investigate the effects of material parameters of the constituent phases on the macroscopic tensile behavior of Q&P steel and to perform a computational material design approach for performance improvement. For this purpose, a model Q&P steel is first produced and various experiments are then performed to characterize the model steel. Actual microstructure-based model is generated based on the information from EBSD, SEM and nano-indentation test, and the material properties for the constituent phases in the model are determined based on the initial constituent properties from HEXRD test and the subsequent calibration of model predictions to tensile test results. The influence of various material parameters of the constituents on the macroscopic behavior is then investigated.
2014-04-01
Technical Paper
2014-01-0755
Zhibin Quan, Zhiqiang Gao, Qigui Wang, Xiao Wen, Yucong Wang, Bowang Xiao
Abstract Heat treated cast aluminum components like engine blocks and cylinder heads can develop significant amount of residual stress and distortion particularly with water quench. To incorporate the influence of residual stress and distortion in cast aluminum product design, a rapid simulation approach has been developed based on artificial neural network and component geometry characteristics. Multilayer feed-forward artificial neural network (ANN) models were trained and verified using FEA residual stress and distortion predictions together with part geometry information such as curvature, maximum dihedral angle, topologic features including node's neighbors, as well as quench parameters like quench temperature and quench media.
2014-04-01
Technical Paper
2014-01-0763
Suhas Kangde, Vishal Shitole, Ashish Kumar Sahu
Abstract Automotive Suspension is one of the critical system in load transfer from road to Chassis or BIW. Using flex bodies in Multi body simulations helps to extract dynamic strain variation. This paper highlights how the MBD and FE integration helped for accurate strain prediction on suspension components. Overall method was validated through testing. Good strain correlation was observed in dynamic strains of constant amplitude in different loading conditions. Combination of different direction loading was also tested and correlated. Method developed can be used in the initial phase of the vehicle development program for suspension strength evaluation. Suspension is one of the important system in vehicle which is subjected to very high loading in all the directions. To predict the dynamic stresses coming on the suspension system due to transient loads, faster and accurate method is required.
2014-04-01
Journal Article
2014-01-1061
Carl Justin Kamp, James Seferis, Michael Arnold, Vasileios Drakonakis
Abstract Nanobridization is a nano-inspired process by which scalable material structures can be designed and manufactured by combining the concept of ‘Nano Free Volume’ with specific material molecules defining a systemic density (nano-density). This approach explores nanotechnology from a porosity perspective rather than nanoparticles thus minimizing health concerns with nanotechnology, while providing nanoporosity throughout the entirety of the composite system. Nanobridization may be viewed as a density system transformation of material heterogeneity utilizing a unified class of materials such as Polynanomers and in developing next generation structures such as Featherweight Carbon Fiber Reinforced Polymers (CFRP). Polynanomers are further defined by the incorporation of hollow carbon fibers, electrospun nano-fibers, nano-pores and carbon nanotubes (CNT) into this newly established type of matrix.
2014-04-01
Technical Paper
2014-01-1059
Aaron C. Tenorio, David D. Lipka
Abstract Composites are well-known to provide good weight reduction and more creative design freedom in automotive closure applications versus traditional ferrous or non-ferrous stamped metal assemblies. Challenges to widespread adoption of composite structures include: Recyclability of the end unit without disassembly Joining together panels Keeping up with high production volumes Limited structural strength without significant metal reinforcement Total delivered cost Latest generation composite liftgates can achieve high levels of component integration and maximum styling freedom by utilizing fully thermoplastic recyclable injected molded panels. Proper material characterization and CAE optimization can reduce the level of internal metal reinforcements, thereby realizing further weight reduction opportunity.
2014-04-01
Technical Paper
2014-01-1056
Sarah J.H. Kuhlman, Susan I. Hill
Abstract The American Chemistry Council sponsored program to optimize a specimen design for use in high strain rate testing of long fiber-reinforced thermoplastics (LFRT) was experimentally validated through testing of injection molded long glass-filled polypropylene (LGFPP) and long glass filled Nylon ® (Nylon). It was demonstrated that the dynamic specimen geometry generated valid results for LFRT tensile tests in the quasi-static through 400/s regime. Optimum specimen size depended on the maximum test rates and end use of the data. The program results provide a basis to select specimen parameters to appropriately represent LFRT or similar materials for comparison or material property testing. Tests established the effects of injection technique; strain rate (nominal 0.1/s to 400/s); fiber fill content (20wt%, 30wt%, 40wt%), specimen type and width, panel thickness, distance to the fill gate, flow orientation, and material homogeneity.
2014-04-01
Technical Paper
2014-01-1053
Bharatesh Adappa Danawade, Ravindra Rachappa Malagi
Abstract The combination of wood and steel together gives better properties than individual materials used alone. The advantage associated with this type of hybridization is composite systems are better than that of non-composite system of same size because the system is stiffer. The purpose of utilization of steel with timber members is mainly for stiffness and strength. Steel adds ductility to composite system. The paper presents the experimental results of the work carried out to study the behavior of specimens prepared in solid teakwood, hollow sectioned steel tube and teakwood filled hollow sectioned steel tube under compression. The circular, rectangular and squared sections were used for study. The interfacial bond between wood and steel is obtained by interference fit and by suitable adhesive for wood-steel composite system.
2014-04-01
Journal Article
2014-01-1052
Jingsi Wu, Owusu Agyeman Badu, Yonchen Tai, Albert R. George
While many composite monocoque and semi-monocoque chassis have been built there is very little open literature on how to design one. This paper considers a variety of issues related to composite monocoque design of an automotive chassis with particular emphasis on designing a Formula SAE or other race car monocoque chassis. The main deformation modes and loads considered are longitudinal torsion, local bending around mounting points, and vertical bending. The paper first considers the design of elements of an isotropic material monocoque that has satisfactory torsional, hardpoint, and vertical bending stiffness. The isotropic analysis is used to gain insight and acquire knowledge about the behavior of shells and monocoque structures when subjected to a vehicle's applied loads. The isotropic modeling is then used to set initial design targets for a full anisotropic composite analysis.
2014-04-01
Technical Paper
2014-01-1049
Danielle Zeng, Cedric Xia, Jeffrey Webb, Li Lu, Yuan Gan, Xianjun Sun, John Lasecki
Abstract Long glass fiber reinforced (LGFR) composites have been widely used in automotive industry to reduce vehicle weight and maintain relatively high mechanical performances. Due to the injection molding process, the distribution of fiber orientations varies at different locations and through the panel thickness, resulting in anisotropic and non-uniform mechanical properties. The current practice of computer modeling of these materials is generally using isotropic properties adjusted by a certain scale factor. The effect of fiber orientation is not carefully considered due to the complexity of fiber orientation distribution in the LGFR parts. The purpose of this paper is to identify key factors affecting vehicle attribute performances where LGFR composites are used; and provide an efficient way for accurate CAE modeling of LGFR composites. In this study, tensile coupons cut from a simple geometric injection molded plaque are tested.
2014-04-01
Technical Paper
2014-01-1048
Hisao Hayashi, Masahiko Ishii
Abstract Waterborne 3-wet paint systems have been developed to reduce volatile organic compounds (VOCs) and CO2 on vehicle painting lines. However, only a small number of vehicles have adopted this system due to limitations in appearance quality (smoothness and gloss). Therefore, a waterborne 3-wet paint system with appearance quality equivalent to a conventional 3-coat 2-bake (3C2B) paint system is under development. This paper describes research for improving appearance quality. After analyzing the unevenness surface formation mechanism of a paint film, this was achieved by adopting base resins with a low glass transition point (Tg) to promote leveling, and reducing the melamine content of the paint to minimize contraction during baking.
2014-04-01
Technical Paper
2014-01-1046
Keisuke Kojima, Takeshi Ogawa
Abstract The CO2 emission from automobile plants is large. A majority of this quantity comes from the body painting process. A breakdown of CO2 emissions from the painting process shows the significant impact of painting process equipment such as the oven used to cure paint and the air conditioning facilities used to maintain controlled temperature and humidity on CO2 emissions. It was concluded, therefore, that shortening these processes will effectively promote the reduction of CO2 emissions. Removing the primer process means that the basecoat (BC) and clearcoat (CC), which provide color and marketability, would be applied on the E-coat directly. By the removing the primer several issues are raised such as stone chipping resistance, weather durability, color variation and appearance. By contrast, this 3Wet painting system applies two coats of waterborne basecoat, dividing it up into 1-Base and 2-Base and then CC, in order to achieve both targets, quality and color variation.
2014-04-01
Technical Paper
2014-01-1044
Katsuyoshi Kaneko, Toshikazu Hirobe, Yusuke Kawada, Tatsumasa Hidaka
Abstract By increasing the percentage of highly dissociative strong acid components included in the neutralizing acid of the electrodeposition coating, it was possible to improve electrical conductivity and coulomb efficiency and achieve excellent throwing power. The GA cratering caused by the increase in the strong acid ratio was resolved by setting the strong acid ratio to 90% while reducing MEQ. By increasing coulomb efficiency, the quantity of hydrogen gas produced during electrodeposition was minimized, and as a result, gas pinholes remaining in the coating were reduced, increasing the smoothness of the coating beyond than that of the current materials. As a result of this study, the usage of e-coating per vehicle body was reduced by approximately 11%.
2014-04-01
Technical Paper
2014-01-1043
Kwang-Ho Oh, Won Hee Han, Jun-Ho Jang, Yong-Choo Tho, Hak Hyun Kim
Abstract Light weighting is a critical objective in the automotive industry to improve fuel efficiency. But when redesigning parts for light weight, by changing from metal to plastic, the resulting design gives NVH issues due to differences in part mass and material stiffness. Many parts were not converted from metal to plastic because of NVH issues that could not be solved. Many engine parts such as cylinder head cover, air intake manifold, oil pan and etc. previously made of metal have since long been replaced with plastic. But timing chain cover has not been replaced because of the aforementioned issue. Sealing performance due to the dynamic characteristics of the application is another challenging factor. In this paper, the key aspects of the plastic timing chain cover as well as its advantage are presented.
2014-04-01
Technical Paper
2014-01-1042
Josh Mcilvaine, Malika Warner
Abstract Thermoplastic polyesters are widely used in the automotive industry and are the material of choice for many types of electrical and electronic components due to their excellent balance of mechanical and electrical properties. Under certain conditions including elevated temperatures and the presence of high humidity, thermoplastic polyesters such as polybutylene terephthalate (PBT) have the potential to suffer hydrolytic attack. Recognizing the need for standardization, USCAR USCAR (The United States Council for Automotive Research) established component level testing guidelines specific to connectors. In response, many companies developed HR (hydrolysis resistant) PBT resins to help manufactures meet these requirements. As with many additive technologies in plastics, there are trade-offs. In this case, hydrolysis resistance was often improved at the expense of melt viscosity stability and high flow during the injection molding process.
2014-04-01
Technical Paper
2014-01-1038
Robert A. Smith
Abstract Twenty plies of low density polyethylene (LDPE) were stacked and irradiated with 200 kGy of 5 MeV electron beam. The plies were analyzed by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) for crosslink density using melting point depression and equilibrium storage modulus respectively. Infra-red spectroscopic analysis was conducted to examine the samples for the presence of chemical modification. The thermal stability of the irradiated samples and an unexposed control was investigated using Thermogravimetric Analysis (TGA). Results were utilized in assessing the viability of crosslinking products after the molding process to produce articles with improved resistance to temperature.
2014-04-01
Technical Paper
2014-01-1039
Sunit Kumar Chanana, Arpit Kapila, Sanjay Haldar, Naman Joshi, Dinesh N Dave
Abstract Plastics nowadays are playing a vital role in the ongoing innovation that is driving the automotive industry to higher performance, safety and sustainability levels. Plastics have allowed automotive designers to meet stringent carbon emission targets and fulfill consumer demands for highly fuel efficient vehicles by reducing vehicle weight while also reducing cost. The next step in weight reduction is to decrease the plastic part thickness further to the minimum possible. But with such reduction in part thickness, it becomes very difficult to meet the side impact crash regulations, and thus it becomes imperative to increase the Impact properties of such light weight materials. Keeping in line with the above, this paper describes the development of a new blend of Polypropylene which has high impact characteristics to meet crash compliance, high MFR to reduce cycle time and allow for easy filling of low thickness parts and keeping specific gravity in check to reduce weight.
2014-04-01
Technical Paper
2014-01-1040
Gihwan Kim, Chi-Hoon Choi, You Sung Moon, Yong Sun (Steven) Jin
Abstract The main contribution of this paper is to employ a sound and vibration theory in order to develop a light and cost effective plastic intercooler pipe. The intercooler pipe was composed of two rubber hoses and one aluminum pipe mounted between an ACV (Air Control Valve) and an intercooler outlet. The engineering design concept is to incorporate low-vibration type bellows and an impedance-mismatched center pipe, which replaces the rubber hoses and aluminum pipe respectively. The bellows were designed to adapt powertrain movement for high vibration transmission loss to the intercooler outlet. Also, the impedance-mismatched center pipe was implemented to increase reflected wave by using relatively higher modulus than bellows part and applying a SeCo (Sequential Coextrusion) processing method.
2014-04-01
Technical Paper
2014-01-1041
Praveensingh Jadhav, Aditya Nanda, Manas Tripathi, Amit Kumar, Shriganesh Umbarkar
Abstract Global automobile market is very sensitive to vehicle fuel economy. Gross vehicle weight has substantial effects on FE. Hence, for designers it becomes utmost important to work on the weight reduction ideas up to single component level. Fuel delivery pipe (Fuel Rail) is one such component where there is a big potential. Fuel rail is an integral part of the vehicle fuel system and is mounted on the engine. Primarily it serves as a channel of fuel supply from fuel tank through fuel lines to the multiple fuel injectors, which further sprays the fuel into intake ports at high pressure. Due to opening and closing of injectors, pulsations are generated in fuel lines, so fuel rail also acts as a surge tank as well as a pulsation damper. All these factors make the design of a fuel rail very critical and unique for a particular engine. Materials like aluminum, plastic and sheet metal are generally used for fuel rail manufacturing.
2014-04-01
Technical Paper
2014-01-1034
Anshuman Shrivastava, Mark Scheel, Julie Strama
Abstract A majority of the plastics manufacturing operations are dependent on the formability of the molten thermoplastics. Ability of the material to flow at a set temperature influences the formability and the overall polymer melt process. Lubricating additive technologies are being developed to engineer the melt flow performance of the resin, promoting the compounding and molding process such as to reduce torque on the motor, reduced shear degradations, enhance uniform filling of hard-to-fill section, promoting thin wall molding, and influence the overall cycle time. Various lubricants are used in formulations to supplement superior flow and metal release with minimal effect on mechanical properties. This paper discusses the methodology to characterize the effectiveness of melt flow additives through comparing two different processing aids in Polybutylene terephthalate (PBT) polyester filled and unfilled matrix and imply differences in processing.
2014-04-01
Technical Paper
2014-01-1035
Shruti Mehta, Mrunal Hatwalne, Mangesh Dhule
Abstract Due to continuous demands from OEM's to reduce weight and make more compact vehicles, high heat generation from vehicle has become common phenomenon. Thermal insulation is a need of the hour to cater to such demands. The temperature rise is more critical around engine areas. OEM's use many design solutions to cater to such heat build up's. One of the design solutions includes use of thermally insulating materials e.g. Foams, insulating fabrics etc… First section of this paper deals with comparative study of polyurethane (PU) soft foam and rigid skin polyurethane foam. To define the base line, the samples were subjected to various tests to determine physical, thermal and chemical properties. Also both the types of foams were subjected to high temperature and low temperature heat ageing. From the experiments, it was observed that soft PU foam provides better re-bounce property than rigid skin PU foam.
2014-04-01
Technical Paper
2014-01-1036
Egon Moos
Abstract In today's vehicles underbody parts are absolutely necessary to reach a certain performance level regarding fuel saving, corrosion protection, driving performance and exterior as well as interior noise. With the constant demand for additional parts, which means additional weight on the car, lightweight materials have come more and more into the focus of development work. LWRT (low weight reinforced thermoplastic) is the acronym for this material group. The ongoing success of such materials in underbody applications that compared to compact materials such as GMT (glass mat reinforced thermoplastic) is the weight saving of up to 50 %, or in other words, with LWRT you can cover twice as much surface then with GMT. The production process is compression molding, but with low pressure because LWRT-material needs only partial compact areas, most regions of these parts can have a density even below 0.5 g/cm3.
2013-10-15
Technical Paper
2013-32-9065
Yameogo Amadou, Chang-Tai Wu, Yu-Cheng Jiang, Jau-Huai Lu
Use of catalyst in engines has entailed a radical increase in the importance of misfire detection. When a misfire occurs, hydrocarbon emissions will increase and the unburned fuel can damage the catalyst by overheating. On-Board Diagnostics II (OBDII) regulations are still not applied to motorcycle or moped yet. However its application is under discussion in European Union. In Taiwan, OBD is scheduled to be implemented soon. Many strategies of misfire detection have been developed, including variation in engine shaft angular speed, spark plug voltage, cylinder pressure, oxygen sensor signal, knowledge based expert system, and neural networks. WE propose a new method to use the real time signals of a wide band oxygen sensor to detect misfire where, misfire was induced on purpose with a misfire generator. The sensor and the misfire trigger signals were recorded simultaneously.
2013-10-15
Technical Paper
2013-32-9117
Hiroshi Enomoto, Shunsuke Sawasaki, Kosuke Nishioka, Lukas Kano Mangalla
In this study, the background gas of the droplet vaporization was concerned and simulated numerically using ANSYS fluent code. The new type, engine-like, condition of high pressure chamber and high temperature environment was considered to conduct experiment on kerosene droplet evaporation. 2D geometry of domain simulation was discretized in the very fine quadrilateral meshes. The numerical approach was solved using implicit scheme of compressible gas solver (density based). Temperature dependent properties of air are expressed for gas material properties. As the study concerning on high pressure condition the equation state of Peng-Robinson was expressed in simulation. Governing equations of mass, momentum and energy were solved by the second order upwind for flow, turbulent kinetic energy and turbulent dissipation rate. Standard k-ε model was used to solve turbulence flow in the spatial discretization.
2013-10-15
Technical Paper
2013-32-9116
Hiroshi Enomoto, Shogo Kunioka, Lukas Kano Mangalla, Noboru Hieda
An experimental study has been conducted at small kerosene droplet behavior near well-defined butane diffusion flame for the critical need on high efficient and cleaner energy technology. High temperature of background gas was generated using butane flame. Microflame from butane can reach the maximum temperature around 1200K at tip of outer glass. Single droplet of kerosene was injected by a small injector tube (30 μm-diameter) in to hot environment. Droplet of kerosene was released by attachment of piezo actuator on wall injector. Once the droplet is exposed to the hot atmosphere of micro flame, the temporal regression of the droplet surface was recorded. Droplet diameter was observed by CCD camera with strobe light flash at 180ns. The images captured in this experiment were analyzed by post-processing software to determine the vaporization of droplet.
2013-10-15
Technical Paper
2013-32-9123
Hiroshi Enomoto, Shogo Kunioka, Noboru Hieda
In this paper, droplet behavior near diffusion flame was observed. Single droplet was created by thin glass tube and piezo device which pushes the side of glass tube. Dispersions of droplets location near diffusive flame were compared to droplets with no flame condition. CCD camera, strobe light with 180nsec flash time and lens of ten magnification were used for observation. Droplet pictures were taken with resolution of 0.46um/pix. As a result, droplets near diffusive flame tend to increase its dispersion of location as approaching tip of the flame. Stefan flow caused by evaporation and turbulence outer flow can be thought as causes.
2013-10-15
Technical Paper
2013-32-9110
Le-Min Wang, Chih-Jrn Tsai
Long term soaking creep rupture tests of a 2024 aluminum alloy in the T4 condition were performed at 100 °C and 130 °C under stresses ranged from 235 MPa to 370 MPa. It appears that the longer creep life can be obtained through the beneficial effect of underageing resulting in the GPB zones being retained in the matrix rather than dissolving and additional dynamic precipitation of S′ precipitates during testing; especially at the condition of 325 MPa at 100 °C, the alloy exhibits longer creep life of at least 14,604 h due to most fully developed very fine precipitates dispersion. When creep test at higher temperature (130°C), the grown S′ precipitates lead to significant reduction of creep rupture life. The correlation of applied stress, creep temperature, creep rupture time, and microstructure evolution were discussed.
2013-10-15
Technical Paper
2013-32-9105
Vipin Sukumaran T, Sumith Joseph, Allwyn Dias, K. Chandra Reddy, S. Saju, Mohan D. Umate
In order to improve the performance and fuel economy of a reciprocating engine, it is important to reduce the overall engine frictional losses. In this paper, author conducts an experimental study on the friction characteristics due to pumping loss, valve-train system, piston assembly, auxiliaries and transmission for a 110cc, single cylinder 4-stroke gasoline engine using frictional strip-down analysis. Friction strip-down method is commonly used to investigate the frictional contribution of various engine elements at high speeds and for better understanding of the make-up of the total engine friction. The engine friction measurements for the particular engine are carried out on a motoring test rig at different engine speeds. In addition, the effect of engine operating parameters such as oil temperature and oil quantity in engine sump is also presented in detail.
2013-10-15
Technical Paper
2013-32-9111
Yukihide Fukuda, Masahiko Nakagawa, Toshimitsu Suzuki
The new die cast (HPDC) wheel alloy has been developed using recycled aluminum to attain considerable reduction of energy at the time of material production to make large contribution to the reduction of CO2 emissions. The material for motorcycle body parts, especially for wheels, requires a sufficient elongation property. However, when recycled aluminum, which contains large amount of impurities, is used as main raw material, the intermetallic compounds crystalize out and the elongation property is deteriorated. Accordingly, we firstly made the investigations on the elements contained in a recycled aluminum and it was clarified that the elongation property was correlated to the shape of crystallized iron-based intermetallic compounds.
Viewing 211 to 240 of 39469

Filter

  • Range:
    to:
  • Year: