Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Computational Process to Effectively Design Seals for Improved Wind Noise Performance

2019-06-05
2019-01-1472
The ability to assess noise transmitted through seals to cabin interiors early in the design process is very important for automotive manufacturers. When a seal design is inadequate, the noise transmitted can dominate the interior noise, making the wind noise performance of the vehicle unacceptable. This can cause launch delays, increasing costs and risking loss of sales. Designing seals using conventional experimental processes is challenging, since the location and strength of flow noise sources are not known when the seal design is planned. Making changes to the seal system after the tooling stage is expensive for manufacturers as tooling and redesign costs can be considerable. Deliberate overdesign by adding multiple layers of seals in a wide range of locations also can reduce profit by unnecessarily raising part and manufacturing costs.
Journal Article

Turbulent Pressure Spectra for Separated Flow Conditions

2019-06-05
2019-01-1475
The magnitude of the turbulent pressure spectrum in fluid flow over an obstruction is usually much larger than in attached flow over a smooth surface. External features on a vehicle, such as windshield wipers, side mirrors and pillars which cause flow separation, are a major source of wind noise. The modeling of the pressure spectrum in separated flow is important for designing quiet vehicles. In this study wind tunnel tests have been performed with different shaped obstructions to measure and correlate the surface pressure spectra with flow parameters such as the pressure coefficient and separation size. The model by Chase for attached turbulent boundary layer pressures is generalized to apply to separated flow conditions.
Journal Article

Psychoacoustic Order Tonality Calculation

2019-06-05
2019-01-1466
Quantifying tonalities in technical sounds according to human perception is a task of growing importance. The psychoacoustic tonality method, published in the 15th edition of the ECMA-74 standard, is a new method that is capable of calculating the perceived tonality of a signal. Other methods, such as Prominence Ratio or Tone-to-Noise Ratio do not consider several essential psychoacoustic effects. The psychoacoustic tonality is based on a model of human hearing and thus is able to model human perception better than other methods. The algorithm described in ECMA-74 calculates tonality over time and frequency. In practice, tonalities often originate from rotating components, for example, parts of an electric motor. In these cases, quantification of the tonality of orders is often more interesting than the tonality over frequency. In this paper, an extension of the psychoacoustic tonality according to ECMA-74 is presented.
Technical Paper

Determining Sound Transmission Loss of SAE J1400 Control Sample

2019-06-05
2019-01-1579
SAE acoustics materials committee published updates of SAE J1400 Standard - Laboratory Measurement of the Airborne Sound Barrier Performance of Flat Materials and Assemblies in 2017. In the standard, a control sample is defined with a specific construction to determine the suitability of the test suite. A set of measured sound transmission loss data of the control sample are included in the published updated standard. Autoneum North America Acoustics Laboratory constructed a control sample based on the design in the standard. Sound transmission loss (STL) measurement of this control sample was performed and results are consistent with published data below 2000 Hz. Above 2000 Hz, STL results are above published limits. Sound intensity measurement and flanking noise paths measurements confirmed the measured STL values of the control sample.
Standard

Animal Environment in Cargo Compartments

2019-06-05
WIP
AIR1600B
The environmental factors of prime importance in the transport of animals in aircraft are air temperature, humidity and carbon dioxide concentration, and of course space (or volume) limitations. Secondary factors are air velocity, noise, lighting, etc. Pressure isnot addressed herein as pressure levels and rates of change are totally dictated by human occupancy requirements. Some basic governmental documents, such as References 1, 2 and 3, define overall requirements for animal transportation, but with very limited data on environmental requirements. Reference 4 gives some airplane characteristics measured during animal transportation from the USA to foreign destinations. Temperature and humidity profiles are indicative of airplane characteristics. This report presents information on the temperature, humidity, ventilation, and carbon dioxide limitations and the metabolic heat release rates for animals which will allow the determination of the environment required by th animals.
Technical Paper

Test and Analysis of Electromagnetic Noise of an Electric Motor in a Pure Electric Car

2019-06-05
2019-01-1492
Compared with the low-frequency ignition order of mechanical and combustion noise of an internal combustion engine, the noise of electric drive assembly of electric vehicles is mainly the high-frequency whining noise generated by electromagnetic forces of motors and gear meshing of reducers, as well as the high-frequency umbrella-shape noise generated by DC/AC pulse width modulation. Although the radiated sound power of these high frequency noise is far less than that of an internal combustion engine, the high frequency noise of the motor and the reducer is subjectively quite annoying. This paper studies the characteristics of electromagnetic noise of a permanent magnet synchronous motor in an electric car. By testing and analyzing of noise sources of an electric motor in the car and on a test rig, the spatial order characteristics and amplitude-frequency characteristics of the electromagnetic forces are revealed. The noise orders are multiples of the number of motor poles.
Technical Paper

Design Optimization of Differential Bevel Gear for NVH Improvement

2019-06-05
2019-01-1552
With fast pacing development of automobile industry and growing needs for better driving experience, NVH performance has become an important aspect of analysis in new driveline product development especially in hybrid and electric powered vehicles. Differential bevel gear has significant role in the final drive. Unlike parallel axis gears such as spur or helical gear, bevel gear mesh shows more complicated characteristics and its mesh parameters are mostly time-varying which calls for more extensive design and analysis. The purpose of this paper is to conduct design study on a differential bevel gear unit under light torque condition and evaluate its NVH characteristics. Unloaded tooth contact analysis (UTCA) of those designs are conducted and compared for several design cases with different micro geometry to investigate their pattern position and size variation effects on NVH response.
Technical Paper

Performance of Additive Manufactured Stacks in a Small Scale Thermoacoustic Heat Engine

2019-06-05
2019-01-1534
Thermoacoustic heat engines (TAHEs) are external combustion engines primarily designed to convert thermal power into acoustic power and, eventually, into mechanical, electric or other forms of high grade power. TAHEs rely on the presence of a porous core, often referred to as “stack”. A temperature gradient is established along the porous core and quasi-adiabatic heat exchanges occur between the solid walls of the pores and the surrounding gaseous medium undergoing pressure fluctuations. The internal geometry of the stack has tremendous impact on the efficiency of thermal-to-acoustic power conversion. In this study, the selective laser melting (SLM) has been used to produce stacks. The SLM is an additive manufacturing (AM) technique designed for 3D metal printing. It is based on high power- density laser which melts and fuses metallic powders together. Three sets of stacks, provided with different hydraulic radii and internal geometries, have been produced.
Technical Paper

Benefit of a Lightweight Frunk

2019-06-05
2019-01-1456
Due to the increasing number of battery electric vehicles (BEVs), the engineering fields regarding driving comfort and NVH issues are becoming more and more challenging: many new factors affect the development of BEVs NVH package. The noise sources related to the powertrain are different from the traditional ones of internal combustion engines, for instance due to the presence of tonal components, strong harmonics and potential whining noise. To satisfy NVH specifications and the need for lightweight solutions to increase driving range, it is important to mask as much as possible the noise coming from the engine bay with materials both lightweight and acoustically performing. Moreover, for electric vehicles new interesting solutions are possible with the introduction of new components that do not find room under the hood of ICE or hybrid vehicles. These components, if properly designed, could lead to significant NVH benefits.
Technical Paper

A Study on NVH Performance Improvement of TPE Air Intake Hose Based on Optimization of Design and Material

2019-06-05
2019-01-1491
Environmental and fuel economy regulations (Eu 6d and WLTP RDE) on automobiles have been tightened recently. To counter this regulation, the global automobile industry is focusing on weight reduction, fuel efficient turbo charger, cooled EGR, thermal management, low friction and so on. However, the high-speed turbocharger makes turbulence, and resulting in airflow noise. This noise is transmitted indoor through the air intake system, which adversely affects the vehicle's competitiveness. Therefore, for turbo engine, it is essential to reduce the noise of the air intake system. The air intake system consists of air cleaner, air filter, air intake hose and air duct. The air flow noise of turbo-engine is mainly the emission noise emitted from the walls of air intake system. And the transfer path of turbo noise is in order of air intake hose, air cleaner and air duct. Therefore, it is effective to reduce the noise of the air intake hose located at the beginning of noise transfer path.
Standard

Synchros, General Specification for

2019-06-05
CURRENT
AS20708C
This specification relates to Synchros, 60 and 400 Hz. It is not complete in itself, but shall be used in conjunction with MIL-DTL-81963, in which the latter shall be recognized as forming an inherent part of this specification. This standard requires a Qualified Products List (see 6.4).
Article

Boeing reports on its environmental efforts

2019-06-05
The strategy identifies 2025 as a target year to collaborate with communities around the globe and create products focused on environmental performance, emissions and waste reduction, and lower levels of water and energy consumption at work sites.
Standard

Titanium Hydraulic Tubing, Ti-3Al-2.5V Cold Worked and Stress Relieved, Up to 35000 kPa (5080 psi), Requirements for Qualification Testing and Control

2019-06-04
CURRENT
AS5620C
This SAE Aerospace Standard (AS) shall be used in conjunction with AMS4946 to provide requirements for qualification testing and for qualified products listing (QPL) and qualified manufacturer listing (QML) for Ti-3Al-2.5V cold worked and stress relieved hydraulic system tubing. The basic tubing shall comply with the requirements of AMS4946.
X