Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Integrated Numerical and Experimental Workflow for High-Performance Vehicle Aerodynamics

2024-02-06
2024-01-5016
The high-performance and motorsport vehicle sectors are pushing the performance frontiers of aerodynamically efficient vehicles. Well-balanced use of accurate and consistent numerical simulation tools in combination with wind tunnel experiments is crucial for cost-effective aerodynamic research and development processes. Therefore, this study assesses the simulation performance of four Reynolds-averaged Navier–Stokes (RANS) turbulence models in relation to experimental and high-fidelity delayed detached eddy simulation (DDES) data for the aerodynamic assessment of a high-performance variant of the DrivAer model (DrivAer hp-F). The influences of predominant wind tunnel conditions on the vehicle’s aerodynamic force coefficients and flow field are also investigated. Additionally, a novel CFD-based blockage correction method is introduced and applied to evaluate the accuracy of conventional blockage correction methods.
Technical Paper

Enhancing Microstructural Characteristics and Mechanical Properties in Friction Stir Welding of Thick Magnesium Alloy Plates through Optimization

2024-02-06
2024-01-5014
This research explores friction stir welding (FSW) to examine the mechanical characteristics and microstructure of thick plates manufactured from the Mg-8Al-0.5Zn alloy. Applying the FSW procedure to warm-form an Mg-8Al-0.5Zn alloy for the differential case covering the gears in the car’s automotive technology. Weld quality was significantly improved after using response surface methodology (RSM) to examine various welding parameters and find the best configurations. Improved grain refinement and phase distribution in the weld zone were found in the microstructural study of 11.5 mm thick magnesium alloy plates using RSM-optimized parameters. By dynamic recrystallization, the grain size was reduced to 16 μm, which is fifteen times smaller than the original material, thanks to the good results of single-pass FSW welding.
Technical Paper

Virtual Prediction of Tractor Front Axle Load and Fatigue Life in Front Loader Application and Validating with Field Measurements

2024-02-06
2024-01-5012
When a specialty tractor is operated by mounting the front loader or backhoes, the loads are distributed proportionately to the front and rear axles. The maximum load and fatigue life were identified as the main parameters in predicting fatigue failure. This paper mainly focuses on predicting front axle loads and fatigue life in front loader applications. To design a new front axle for the loader application, an existing front axle assembly that was designed for orchard, sprayer, and small farm application is selected for study and to extend it for front loader application with minimal design modifications. The major challenge is to estimate the dynamic loads coming to the front axle due to the front loader application and validate it for a different set of load cases as per the design verification plan. Hence a methodology was framed to estimate the actual loads using MBD, validate with field measurements, and verify the new front axle design using those loads in FEA.
Technical Paper

Evaluation of Lightweight Cotton Textiles for Durable and Comfortable Automotive Interior Applications

2024-02-06
2024-01-5015
In regions with hot and humid climatic conditions, lightweight cotton textiles such as lawns, are famous for clothing and being explored for use in automobile interiors. Specifically, there’s an interest in these fabrics for car seat covers, interior roof linings, and door trims. Textiles must balance weight and durability for automotive applications to ensure passenger comfort while withstanding regular wear and tear. This study assesses cotton fabrics’ wear and mechanical performance with densities between 40 and 60 g/m2, produced using yarn counts of 70, 60, and 40 Ne. The objective was to determine the optimal fabric parameters for creating automotive spare parts that are both durable and comfortable. Two production strategies were contrasted: coarser yarn counts with fewer warp and weft threads per inch and finer yarn counts with a higher thread density.
Technical Paper

Effect of Stacking Sequence on Mechanical Properties of Bamboo/Bagasse Composite Fiber for Automobile Seat Cushions and Upholstery Application

2024-02-06
2024-01-5013
Researchers have chosen to study natural fibers instead of synthetic fibers since low-cost and ecologically favorable materials are required. The present research concentrates on the mechanical characteristics of epoxy composites reinforced with bamboo and bagasse fibers. The hybrids were created using four different ratios of bamboo/bagasse fibers, then hand-laid up. The material characteristics of the generated composites, including tension, bending, impacts, and Shore D hardness measurements, were assessed. The scanning electron microscopy technique was used to study morphology. Three levels of bamboo and a core network of bamboo fibers in composites were assumed to generate superior qualities. The core layer of bamboo and an outer layer typically characterized by sugarcane composites have enhanced flexural strength and Shore D toughness because of the bamboo layer at the center.
Standard

Nut, Self-Locking, 0.7500 thru 1.5000 Thread Sizes, UNS S66286, 160,000 psi, 800 °F, UNJ Thread – Procurement Specification

2024-02-06
CURRENT
AS5377A
This specification establishes the requirements for self-locking wrenchable nuts with thread sizes 0.7500 thru 1.5000 inches. The nuts are made of corrosion and heat resistant precipitation hardenable iron base alloy of the type identified under the Unified Numbering System as UNS S66286 and of 160,000 psi axial tensile strength at room temperature, with maximum conditioning temperature of parts at 800 °F.
Standard

Recommended Practice for Measuring Fuel Consumption and Range of Fuel Cell and Hybrid Fuel Cell Vehicles Fueled by Compressed Gaseous Hydrogen

2024-02-06
CURRENT
J2572_202402
This SAE Recommended Practice establishes uniform procedures for testing fuel cell and hybrid fuel cell electric vehicles, excluding low speed vehicles, designed primarily for operation on the public streets, roads and highways. The procedure addresses those vehicles under test using compressed hydrogen gas supplied by an off-board source or stored and supplied as a compressed gas onboard. This practice provides standard tests that will allow for determination of fuel consumption and range based on the US Federal Emission Test Procedures, using the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS). Chassis dynamometer test procedures are specified in this document to eliminate the test-to-test variations inherent with track testing, and to adhere to standard industry practice for fuel consumption and range testing.
Standard

Reduced Effort Power Steering Modifications and Backup Systems (Hydraulic and/or Electric)

2024-02-06
CURRENT
J2672_202402
This SAE Information Report relates to a special class of automotive adaptive equipment which consists of modifications to the power steering system provided as original equipment on personally licensed vehicles. These modifications are generically called “modified effort steering” or “reduced effort power steering.” The purpose of the modification is to alter the amount of driver effort required to steer the vehicle. Retention of reliability, ease of use for physically disabled drivers and maintainability are of primary concern. As an Information Report, the numerical values for performance measurements presented in this report and in the test procedure in the appendices, while based upon the best knowledge available at the time, have not been validated.
X