Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

LIDAR and Infrared Cameras for ADAS and Autonomous Sensing

This course examines ADAS and autonomous vehicle technologies that offer the potential to increase safety while attempting to optimize the cost of car ownership. LIDAR (light detection ranging) and Infrared camera sensing are seeing a rapid growth and adoption in the industry. However, the sensor requirements and system architecture options continue to evolve almost every six months. This course will provide the foundation to build on for these two technologies in automotive applications. It will include a demonstration model for LIDAR and Infrared camera.
Training / Education

Infrared Camera for ADAS and Autonomous Sensing

Advanced Driver Assist System (ADAS) and autonomous vehicle technologies have disrupted the traditional automotive industry with potential to increase safety and optimize the cost of car ownership. Among the challenges are those of sensing the environment in and around the vehicle. Infrared camera sensing is seeing a rapid growth and adoption in the industry. The applications and illumination architecture options continue to evolve. This course will provide the foundation on which to build near infrared camera technologies for automotive applications.
Training / Education

LIDAR for ADAS and Autonomous Sensing

Advanced Driver Assist System (ADAS) and autonomous vehicle technologies have disrupted the traditional automotive industry with potential to increase safety and optimize the cost of car ownership. Light detection and ranging (LIDAR) sensing, a sensing method that detects objects and maps their distances, is seeing rapid growth and adoption in the industry. However, the sensor requirements and system architecture options continue to evolve. This course will provide the foundation to build LIDAR technologies in automotive applications.
Training / Education

Managing Engineering & Technical Professionals

2024-10-29
In the fast paced and competitive environment of today's global economy, the work of technical professionals is often the difference between success and failure in an organization. Providing leadership for engineers is uniquely challenging, and the transition from working engineer to first-line technical supervisor is one of the most difficult career challenges that an engineer may face. First-time engineering supervisors and mid-level managers who wish to sharpen their skills and learn new techniques for guiding, coaching, and motivating working engineers, technicians, and designers will find this course valuable.
Training / Education

Vehicle Noise Control Engineering Academy - Powertrain Noise Track

2024-10-14
The Vehicle Noise Control Engineering Academy covers a variety of vehicle noise control engineering principles and practices. There are two concurrent, specialty tracks (with some common sessions): Powertrain Noise and Vehicle Interior Noise. Participants should choose and register for the appropriate Academy they wish to attend. The Powertrain Noise track focuses on noise and vibration control issues associated with internal combustion, hybrid and electric powered vehicles. The vehicle in this case includes passenger cars, SUVs, light trucks, off-highway vehicles, and heavy trucks.
Book

Honda R&D Technical Review April 2021

2021-04-01
Honda R&D Technical Review is a periodical containing research papers related to Honda R&D Center activities worldwide that cover automobile, motorcycle, power products, aircraft engine, and other fundamental technologies. Honda Motor offers a book for the April 2021 issue with 104 pages containing 12 papers focusing on the following latest topics: Technology for Prediction of Contactor Noise for Electric-powered Vehicle Batteries Reduction of Internal Resistance in High Capacity Lithium-ion Batteries with 3D Lattice-structured Electrode Predictive Technique for Seat Belt Submarining Injury by Triaxial Iliac Load Cell
SAE MOBILUS Subscription

SAE Aerospace Technical Papers Collection

2016-11-30
The Aerospace Technical Paper Collection is a family of technical papers as either an annual subscription (current papers, archived papers, or both) or a perpetual collection (1906-1997).
Standard

LOGICAL SOFTWARE PART PACKAGING FOR TRANSPORT

2020-11-16
CURRENT
ARINC641-1
The purpose of this standard is to provide a method for packaging aircraft software parts for distribution using contemporary media or by electronic distribution. This project intends to standardize and provide guidance for the storage of floppy based software, currently packaged in media set parts. This standard format can be then stored or distributed on a single physical media member (CD-ROM), or by electronic crate. The obsolescence of floppy disks drive an urgent need for this guidance.
Standard

OBSOLESCENCE MANAGEMENT STRATEGIES FOR COMMERCIAL AIRCRAFT

2019-05-14
CURRENT
ARINC662-1
The purpose of this document is to establish guidelines that should be observed during initial design, production, and maintenance of aircraft components, and to present short-term and long-term strategies to minimize the costs and impacts associated with decreasing availability of components.
Standard

AIRCRAFT AUTONOMOUS DISTRESS TRACKING (ADT)

2019-08-26
CURRENT
ARINC680
This document describes the technical requirements, architectural options, and recommended interface standards to support an Autonomous Distress Tracking (ADT) System intended to meet global regulatory requirements for locating aircraft in distress situations and after an accident. This document is prepared in response to International Civil Aviation Organization (ICAO) and individual Civil Aviation Authorities (CAAs) initiatives.
Standard

TIMELY RECOVERY OF FLIGHT DATA (TRFD)

2021-08-06
CURRENT
ARINC681
The difficulty in locating crash sites has prompted international efforts for alternatives to quickly recover flight data. This document describes the technical requirements and architectural options for the Timely Recovery of Flight Data (TRFD) in commercial aircraft. ICAO and individual Civil Aviation Authorities (CAAs) levy these requirements. The ICAO Standards and Recommended Practices (SARPs) and CAA regulations cover both aircraft-level and on-ground systems. This report also documents additional system-level requirements derived from the evaluation of ICAO, CAA, and relevant industry documents and potential TRFD system architectures. It describes two TRFD architectures in the context of a common architectural framework and identifies requirements. This report also discusses implementation recommendations from an airplane-level perspective.
Standard

MARK I AVIATION KU-BAND AND KA-BAND SATELLITE COMMUNICATION SYSTEM PART 1 PHYSICAL INSTALLATION AND AIRCRAFT INTERFACES

2019-09-19
CURRENT
ARINC791P1-3
This standard sets forth the desired characteristics of Aviation Ku-band Satellite Communication (Satcom) and Ka-band Satcom Systems intended for installation in all types of commercial air transport aircraft. The intent of this characteristic is to provide guidance on the interfaces, form, fit, and function of the systems. This document also describes the desired operational capability of the equipment needed to provide a broadband transport link that can be used for data, video, and voice communications typically used for passenger communications and/or entertainment. The systems described in this characteristic are not qualified, at this writing, for aviation safety functions.
Standard

CABIN ARCHITECTURE FOR WIRELESS DISTRIBUTION SYSTEM

2019-08-13
CURRENT
ARINC820
This document defines a secure Wi-Fi distribution network installed in the aircraft passenger cabin for passenger and crew use. Carry-on Portable Electronic Devices (PEDs) such as smart phones, tablets, and laptops may use this network to access public internet services provided on the aircraft.
Standard

Procedure for the Continuous Sampling and Measurement of Non-Volatile Particle Emissions from Aircraft Turbine Engines

2013-11-18
HISTORICAL
AIR6241
This SAE Aerospace Information Report (AIR) describes procedures, required continuous sampling conditions, and instrumentation for the measurement of non-volatile particle number and mass concentrations from the exhaust of aircraft gas turbine engines. Procedures are included to calculate sampling loss performance. This AIR is not intended for in-flight testing, nor does it apply to engine operating in the afterburning mode.
Standard

Procedure for the Continuous Sampling and Measurement of Non-Volatile Particle Emissions from Aircraft Turbine Engines

2020-07-28
CURRENT
AIR6241A
This Aerospace Information Report (AIR) is a historical technical record describing procedures, required continuous sampling conditions, and instrumentation for the measurement of non-volatile particle number and mass concentrations from the exhaust of aircraft gas turbine engines. Procedures are included to calculate sampling loss performance. This AIR is not intended for in-flight testing, nor does it apply to engine operating in the afterburning mode. This Aerospace Information Report is a historical technical record of the initial document detailing the measurement of non-volatile particle emissions at the exit plane of aircraft gas turbine engines. This methodology was adopted by ICAO into Annex 16 Vol II and updated into Aerospace Recommended Practice ARP6320. Future updates of this document may include explanations of the reasoning and assumptions used to develop this measurement methodology.
Standard

AVIONICS APPLICATION SOFTWARE STANDARD INTERFACE PART 3A CONFORMITY TEST SPECIFICATIONS FOR ARINC 653 REQUIRED SERVICES

2019-07-18
CURRENT
ARINC653P3A-1C1
ARINC 653, Part 3A is the Compliance Test Specification for ARINC 653 Required Services presently defined in ARINC 653 Part 1. The document specifies a set of stimuli and the expected responses. Future work on the ARINC 653 document set includes an effort to define Operating System services for multi-core processor environments. The Compliance Test Specification is expected to be updated in step with ARINC 653, Part 1.
Standard

COCKPIT DISPLAY SYSTEM INTERFACES TO USER SYSTEMS PART 1 AVIONICS INTERFACES, BASIC SYMBOLOGY, AND BEHAVIOR

2019-06-17
CURRENT
ARINC661P1-7
ARINC 661 defines logical interfaces to Cockpit Display Systems (CDS) used in all types of aircraft installations. The CDS provides graphical and interactive services to user applications within the flight deck environment. When combined with data from user applications, it displays graphical images to the flight deck crew. The document emphasizes the need for independence between aircraft systems and the CDS. This document defines the interface between the avionics equipment and display system graphics generators. This document does not specify the "look and feel" of any graphical information, and as such does not address human factors issues. These are defined by the airline flight operations community. Supplement 7 adds the definition of: Selector Widget, Tree Widget, New FormatString options, Readouts available in MapItems, Provisions for Touch Screen Displays.
X