Refine Your Search

Topic

Search Results

Technical Paper

Cyber-security for Engine ECUs: Past, Present and Future

2015-09-01
2015-01-1998
In this paper, we outline past, present and future applications of automotive security for engine ECUs. Electronic immobilizers and anti-tuning countermeasures have been used for several years. Recently, OEMs and suppliers are facing more and more powerful attackers, and as a result, have introduced stronger countermeasures based on hardware security. Finally, with the advent of connected cars, it is expected that many things that currently require a physical connection will be done remotely in a near future. This includes remote diagnostics, reprogramming and engine calibration.
Technical Paper

Research on Vehicle Cybersecurity Based on Dedicated Security Hardware and ECDH Algorithm

2017-09-23
2017-01-2005
Vehicle cybersecurity consists of internal security and external security. Dedicated security hardware will play an important role in car’s internal and external security communication. ...For certain AURIX MCU consisting of HSM, the experiment result shows that cheaper 32-bit HSM’s AES calculating speed is 25 times of 32-bit main controller, so HSM is an effective choice to realize cybersecurity. After comparing two existing methods that realize secure CAN communication, A Modified SECURE CAN scheme is proposed, and differences of the three schemes are analyzed.
Magazine

Automotive Engineering: February 3, 2016

2016-02-03
Baking in protection With vehicles joining the Internet of Things, connectivity is making cybersecurity a must-have obligation for automotive engineers, from initial designs through end-of-life.
Magazine

Automotive Engineering: June 2022

2022-06-02
Supplier Eye Inflation ignites another supplier squeeze Toyota reinvesting in collaborative safety research SAE and NREL partner to strengthen EV-charging cybersecurity Expanding the 'bubble' of cabin acoustics 2022 Ford F-150 Lightning redefines the pickup paradigm GM's Hummer EV is like nothing else
Magazine

Automotive Engineering: September 2021

2021-09-01
Editorial EV bafflers, surprises and ironies Altair honors weight-saving innovations Finding failure inside lithium-metal batteries GM puts its new 2023 Corvette V8 on a different 'plane' SAE Standards News New ISO-SAE 21434 for cybersecurity Supplier Eye Preparing for the new, faster product cadence 2022 Jeep Compass gets class-leading safety upgrades Toyota muscles-up 4-cylinder for revised 2022 GR 86 coupe Q&A Manufacturing consultant Laurie Harbour lays out the looming pressures on the auto-manufacturing supply base.
Technical Paper

Future of Automotive Embedded Hardware Trust Anchors (AEHTA)

2022-03-29
2022-01-0122
In conjunction with an increasing number of related laws and regulations (such as UNECE R155 and ISO 21434), these drive security requirements in different domains and areas. 2 In this paper we examine the upcoming trends in EE architectures and investigate the underlying cyber-security threats and corresponding security requirements that lead to potential requirements for “Automotive Embedded Hardware Trust Anchors” (AEHTA).
Technical Paper

Securing Connected Vehicles End to End

2014-04-01
2014-01-0300
As vehicles become increasingly connected with the external world, they face a growing range of security vulnerabilities. Researchers, hobbyists, and hackers have compromised security keys used by vehicles' electronic control units (ECUs), modified ECU software, and hacked wireless transmissions from vehicle key fobs and tire monitoring sensors. Malware can infect vehicles through Internet connectivity, onboard diagnostic interfaces, devices tethered wirelessly or physically to the vehicle, malware-infected aftermarket devices or spare parts, and onboard Wi-Fi hotspot. Once vehicles are interconnected, compromised vehicles can also be used to attack the connected transportation system and other vehicles. Securing connected vehicles impose a range of unique new challenges. This paper describes some of these unique challenges and presents an end-to-end cloud-assisted connected vehicle security framework that can address these challenges.
Journal Article

Zero-Day Attack Defenses and Test Framework for Connected Mobility ECUs

2021-04-06
2021-01-0141
Recent developments in the commercialization of mobility services have brought unprecedented connectivity to the automotive sector. While the adoption of connected features provides significant benefits to vehicle owners, adversaries may leverage zero-day attacks to target the expanded attack surface and make unauthorized access to sensitive data. Protecting new generations of automotive controllers against malicious intrusions requires solutions that do not depend on conventional countermeasures, which often fall short when pitted against sophisticated exploitation attempts. In this paper, we describe some of the latent risks in current automotive systems along with a well-engineered multi-layer defense strategy. Further, we introduce a novel and comprehensive attack and performance test framework which considers state-of-the-art memory corruption attacks, countermeasures and evaluation methods.
Journal Article

Simple Cryptographic Key Management Scheme of the Electronic Control Unit in the Lifecycle of a Vehicle

2020-12-31
Abstract Connecting vehicles to various network services increases the risk of in-vehicle cyberattacks. For automotive industries, the supply chain for assembling a vehicle consists of many different organizations such as component suppliers, system suppliers, and car manufacturers (CMs). Moreover, once a vehicle has shipped from the factory of the CM, resellers, dealers, and owners of the vehicle may add and replace the optional authorized and third-party equipment. Such equipment may have serious security vulnerabilities that may be targeted by a malicious attacker. The key management system of a vehicle must be applicable to all use cases. We propose a novel key management system adaptable to the electronic control unit (ECU) lifecycle of a vehicle. The scope of our system is not only the vehicle product line but also the third-party vendors of automotive accessories and vehicle maintenance facilities, including resellers, dealers, and vehicle users.
Technical Paper

The Study of Secure CAN Communication for Automotive Applications

2017-03-28
2017-01-1658
Cyber security is becoming increasingly critical in the car industry. Not only the entry points to the external world in the car need to be protected against potential attack, but also the on-board communication in the car require to be protected against attackers who may try to send unauthorized CAN messages. However, the current CAN network was not designed with security in mind. As a result, the extra measures have to be taken to address the key security properties of the secure CAN communication, including data integrity, authenticity, confidentiality and freshness. While integrity and authenticity can be achieved by using a relatively straightforward algorithms such as CMAC (Cipher-based Message Authentication Code) and Confidentiality can be handled by a symmetric encryption algorithm like AES128 (128-bit Advanced Encryption Standard), it has been recognized to be more challenging to achieve the freshness of CAN message.
Standard

Security for Plug-In Electric Vehicle Communications

2018-02-15
CURRENT
J2931/7_201802
This SAE Information Report J2931/7 establishes the security requirements for digital communication between Plug-In Electric Vehicles (PEV), the Electric Vehicle Supply Equipment (EVSE) and the utility, ESI, Advanced Metering Infrastructure (AMI) and/or Home Area Network (HAN).
Standard

Hardware Protected Security for Ground Vehicles

2020-02-10
CURRENT
J3101_202002
Access mechanisms to system data and/or control is a primary use case of the hardware protected security environment (hardware protected security environment) during different uses and stages of the system. The hardware protected security environment acts as a gatekeeper for these use cases and not necessarily as the executor of the function. This section is a generalization of such use cases in an attempt to extract common requirements for the hardware protected security environment that enable it to be a gatekeeper. Examples are: Creating a new key fob Re-flashing ECU firmware Reading/exporting PII out of the ECU Using a subscription-based feature Performing some service on an ECU Transferring ownership of the vehicle Some of these examples are discussed later in this section and some have detailed sections of their own. This list is by no means comprehensive.
Technical Paper

Evaluating Trajectory Privacy in Autonomous Vehicular Communications

2019-04-02
2019-01-0487
Autonomous vehicles might one day be able to implement privacy preserving driving patterns which humans may find too difficult to implement. In order to measure the difference between location privacy achieved by humans versus location privacy achieved by autonomous vehicles, this paper measures privacy as trajectory anonymity, as opposed to single location privacy or continuous privacy. This paper evaluates how trajectory privacy for randomized driving patterns could be twice as effective for autonomous vehicles using diverted paths compared to Google Map API generated shortest paths. The result shows vehicles mobility patterns could impact trajectory and location privacy. Moreover, the results show that the proposed metric outperforms both K-anonymity and KDT-anonymity.
Standard

Requirements for a COTS Assembly Management Plan

2020-08-03
CURRENT
EIA933C
This document applies to the development of Plans for integrating and managing COTS assemblies in electronic equipment and Systems for the commercial, military, and space markets; as well as other ADHP markets that wish to use this document. For purposes of this document, COTS assemblies are viewed as electronic assemblies such as printed wiring assemblies, relays, disk drives, LCD matrices, VME circuit cards, servers, printers, laptop computers, etc. There are many ways to categorize COTS assemblies1, including the following spectrum: At one end of the spectrum are COTS assemblies whose design, internal parts2, materials, configuration control, traceability, reliability, and qualification methods are at least partially controlled, or influenced, by ADHP customers (either individually or collectively). An example at this end of the spectrum is a VME circuit card assembly.
Journal Article

Data Privacy in the Emerging Connected Mobility Services: Architecture, Use Cases, Privacy Risks, and Countermeasures

2019-10-14
Abstract The rapid development of connected and automated vehicle technologies together with cloud-based mobility services is transforming the transportation industry. As a result, huge amounts of consumer data are being collected and utilized to provide personalized mobility services. Using big data poses serious challenges to data privacy. To that end, the risks of privacy leakage are amplified by data aggregations from multiple sources and exchanging data with third-party service providers, in face of the recent advances in data analytics. This article provides a review of the connected vehicle landscape from case studies, system characteristics, and dataflows. It also identifies potential challenges and countermeasures.
Standard

Security for Plug-In Electric Vehicle Communications

2017-10-02
HISTORICAL
J2931/7_201710
This SAE Information Report J2931/7 establishes the security requirements for digital communication between Plug-In Electric Vehicles (PEV), the Electric Vehicle Supply Equipment (EVSE) and the utility, ESI, Advanced Metering Infrastructure (AMI) and/or Home Area Network (HAN).
Best Practice

Guidelines for Mobility Data Sharing Governance and Contracting

2020-04-08
CURRENT
MDC00001202004
Digitally enabled mobility vehicles and services, including dockless bikesharing and electric scooter sharing, are generating and collecting a growing amount of mobility data. Mobility data holds great potential to support transportation officials and their efforts to manage the public right-of-way, but the unlimited distribution of mobility data carries untested risks to privacy and public trust. The Mobility Data Collaborative™ has identified the need to improve and coordinate understanding among all parties around foundational policy and legal issues to support mobility data sharing, including privacy and contracting. The guidelines are geared towards supporting a scalable mobility data sharing framework that aligns the interests of the public and private sectors while addressing privacy, transparency, data ownership, and consumer trust.
Magazine

Autonomous Vehicle Engineering: August 2018

2018-08-02
Editorial V2Reality Blockchain Unchained! The weird world of cryptocurrency exists because of the intense mathematics of blockchain technology. The mobility sector is looking beyond Bitcoin to put blockchain to work in potentially game-changing ways. Are Blockchain and 'Smart Contracts' the Secure Future? Legal risk and reward of blockchain and smart contracts as a prescription for automotive applications Software Building Blocks for AV Systems Elektrobit's unique software framework is designed to smooth development of automated driving functions. Cyber Security Goes Upstream The first cloud-based solution for connected vehicles was born in Israel and is now pilot testing at global OEMs. Electronic Architectures Get Smart Upgradable, scalable and powerful new architectures will help enable data-hungry connected, autonomous vehicles. Aptiv's VP of Mobility Architecture explains.
Magazine

Automotive Engineering: March 2019

2019-03-01
Rethinking the HUD Advanced tech solutions move toward augmented reality to bring greater capability to head-up displays. Motor matters New designs and materials are key to the next generation of electric machines for EV propulsion. Harnessing the power of Sim Serious cost savings could come from eliminating vehicle- and systems-level tests. Powerful simulation tools may be the only way to tackle the increasing complexity in mobility development. An OBE for the SAE Meet Paul Mascarenas-SAE International's 2019 president. He's a staunch advocate for professional development for engineers amid the mobility industry's transformation. Solving the propulsion puzzle Must-attend expert panels at SAE's WCX '19 will cover the propulsion-tech future like no other. Editorial Kill the EV tax credit by 2025 SAE Standards News SAE and Synopsys collaborate on cyber study Supplier Eye New Co. vs. Old Co.
X