Refine Your Search

Search Results

Viewing 1 to 2 of 2
Research Report

Unsettled Topics Concerning Airworthiness Cybersecurity Regulation

2020-08-31
EPR2020013
Its extensive application of data networks, including enhanced external digital communication, forced the Federal Aviation Administration (FAA), for the first time, to set “Special Conditions” for cybersecurity. In the 15 years that ensued, airworthiness regulation followed suit, and all key rule-, regulation-, and standard-making organizations weighed in to establish a new airworthiness cybersecurity superset of legislation, regulation, and standardization. ...In the 15 years that ensued, airworthiness regulation followed suit, and all key rule-, regulation-, and standard-making organizations weighed in to establish a new airworthiness cybersecurity superset of legislation, regulation, and standardization. The resulting International Civil Aviation Organization (ICAO) resolutions, US and European Union (EU) legislations, FAA and European Aviation Safety Agency (EASA) regulations, and the DO-326/ED-202 set of standards are already the de-facto, and soon becoming the official, standards for legislation, regulation, and best practices, with the FAA already mandating it to a constantly growing extent for a few years now—and EASA adopting the set in its entirety in July 2020.
Journal Article

A Novel Assessment and Administration Method of Autonomous Vehicle

2020-04-14
2020-01-0708
As a promising strategic industry group that is rapidly evolving around the world, autonomous vehicle is entering a critical phase of commercialization from demonstration to end markets. The global automotive industry and governments are facing new common topics and challenges brought by autonomous vehicle, such as how to test, assess, and administrate the autonomous vehicle to ensure their safe running in real traffic situations and proper interactions with other road users. Starting from the facts that the way to autonomous driving is the process of a robot or a machine taking over driving tasks from a human. This paper summarizes the main characteristics of autonomous vehicle which are different from traditional one, then demonstrates the limitations of the existing certification mechanism and related testing methods when applied to autonomous vehicle.
Standard

Requirements for Probe Data Collection Applications

2022-06-09
CURRENT
J2945/C_202206
Connected vehicles can provide data from multiple sensors that monitor both the vehicle and the environment through which the vehicle is passing. The data, when shared, can be used to enhance and optimize transportation operations and management—specifically, traffic flow and infrastructure maintenance. This document describes an interface between vehicle and infrastructure for collecting vehicle/probe data. That data may represent a single point in time or may be accumulated over defined periods of time or distance, or may be triggered based on circumstance. The purpose of this document is to define an interoperable means of collecting the vehicle/probe data in support of the use cases defined herein. There are many additional use cases that may be realized based on the interface defined in this document. Note that vehicle diagnostics are not included within the scope of this document, but diagnostics-related features may be added to probe data in a future supplemental document.
Journal Article

uACPC: Client-Initiated Privacy-Preserving Activation Codes for Pseudonym Certificates Model

2020-07-27
Abstract With the adoption of Vehicle-to-everything (V2X) technology, security and privacy of vehicles are paramount. To avoid tracking while preserving vehicle/driver’s privacy, modern vehicular public key infrastructure provision vehicles with multiple short-term pseudonym certificates. However, provisioning a large number of pseudonym certificates can lead to an enormous growth of Certificate Revocation Lists (CRLs) during its revocation process. One possible approach to avoid such CRL growth is by relying on activation code (AC)-based solutions. In such solutions, the vehicles are provisioned with batches of encrypted certificates, which are decrypted periodically via the ACs (broadcasted by the back-end system). When the system detects a revoked vehicle, it simply does not broadcast the respective vehicle’s AC. As a result, revoked vehicles do not receive their respective AC and are prevented from decrypting their certificates.
X