Refine Your Search

Search Results

Viewing 1 to 5 of 5
Research Report

Unsettled Technology Domains in Robotics for Automation in Aerospace Manufacturing

2019-12-20
EPR2019010
Cost reduction and increasing production rates are driving automation of aerospace manufacturing. Articulated serial robots may replace bespoke gantry automation or human operations. Improved accuracy is key to enabling operations such as machining, additive manufacturing (AM), composite fabrication, drilling, automated program development, and inspection. New accuracy standards are needed to enable process-relevant comparisons between robotic systems. Accuracy can be improved through calibration of kinematic and joint stiffness parameters, joint output encoders, adaptive control that compensates for thermal expansion, and feedforward control that compensates for hysteresis and external loads. The impact of datuming could also be significantly reduced through modeling and optimization. Highly dynamic end effectors compensate high-frequency disturbances using inertial sensors and reaction masses.
Research Report

Unsettled Technology Domains in Aerospace Additive Manufacturing Concerning Safety, Airworthiness, and Certification

2019-12-23
EPR2019008
Additive manufacturing (AM) is currently being used to produce many certified aerospace components. However, significant advantages of AM are not exploited due to unresolved issues associated with process control, feedstock materials, surface finish, inspection, and cost. Components subject to fatigue must undergo surface finish improvements to enable inspection. This adds cost and limits the use of topology optimization. Continued development of process models is also required to enable optimization and understand the potential for defects in thin-walled and slender sections. Costs are high for powder-fed processes due to material costs, machine costs, and low deposition rates. Costs for wire-fed processes are high due to the extensive postprocess machining required. In addition, these processes are limited to low-complexity features.
X