Refine Your Search

Topic

Author

Affiliation

Search Results

Event

2024-04-30
Technical Paper

A Cycloidal Rotor and Airship System for On-Demand Hypercommuting

2016-09-20
2016-01-2026
A lighter-than-air (LTA) vehicle provides the efficient loitering and part of the lift, while a set of cycloidal rotors provides the lift for payload as well as propulsion. This combination offers low noise and low downwash. A standardized automobile carriage is slung below the LTA, permitting driveway to driveway boarding and off-loading for a luxury automobile.
Standard

A GUIDE TO THE DEVELOPMENT OF A GROUND STATION FOR ENGINE CONDITION MONITORING

1994-02-01
HISTORICAL
AIR4175
An effective ground station is vital to the successful implementation of an EMS and is a fundamental part of the total monitoring system design. Unlike on-board processing systems which principally use data to indicate when engine maintenance is required, ground stations offer much greater processing power to analyse and manipulate EMS data more comprehensively for both maintenance and logistics purposes. This document reviews the main EMS functions and discusses the operating requirements which will determine the basic design of a ground station, including the interfaces with other maintenance or logistics systems. A brief discussion is also included on some of the more recent advances in EMS ground station technology which have been specifically developed to provide more effective diagnostic capabilities for gas turbine engines. Finally, this document addresses the program management requirements associated with the initial development and on-going support of a ground station.
Technical Paper

A General Platform for the Modeling and Optimization of Conventional and More Electric Aircrafts

2014-09-16
2014-01-2187
In the present investigation the tools has been applied to a regional airliner (ATR 72-600) as a case study and two options for the propulsion system were considered: conventional and More Electric Aircraft. In order to validate the proposed turboprop model, the results obtained with PLA.N.E.S. were compared to nominal literature data and numerical values obtained with the Gas Turbine Simulation Program (GSP).
Technical Paper

A Ground Test Program to Support Condition Monitoring of a Spacecraft Attitude Control Propulsion System

1991-09-01
912169
The Comet Rendezvous Asteroid Flyby (CRAF) mission involves seven years of flight from 0.6 to 4.57 Astronomical Units (AU), followed by about 915 days of maneuvering around a comet. Ground testing will characterize the very critical attitude control system thrusters' fuel consumption and performance for all anticipated fuel temperatures over thruster life. The ground test program characterization will support flight condition monitoring. A commercial software application hosted on a commercial microcomputer will control ground test operations and data acquisition using a newly designed thrust stand. The data acquisition and control system uses a graphics-based language and features a visual interface to integrate data acquisition and control.
Standard

A Guide to Aircraft Power Train Monitoring

2008-06-04
HISTORICAL
AIR4174
This document covers all power train elements from the point at which the gas generator energy is transferred to mechanical energy for propulsion purposes. The document covers engine power train components, their interfaces, transmissions, gearboxes, hanger bearings, shafting and associated rotating accessories, propellers and rotor systems as shown in Figure 1.
Standard

A Guide to Aircraft Power Train Monitoring

2017-07-19
CURRENT
AIR4174A
This document covers all power train elements from the point at which aircraft propulsion energy in a turbine or reciprocating engine is converted via a gear train to mechanical energy for propulsion purposes. ...This document covers all power train elements from the point at which aircraft propulsion energy in a turbine or reciprocating engine is converted via a gear train to mechanical energy for propulsion purposes. The document covers aircraft engine driven transmission and gearbox components, their interfaces, drivetrain shafting, drive shaft hanger bearings, and associated rotating accessories, propellers, and rotor systems as shown in Figure 1.
Standard

A Guide to Aircraft Turbine Engine Vibration Monitoring Systems

2015-12-20
CURRENT
ARP1839
This Aerospace Recommended Practice (ARP) is a general overview of typical airborne engine vibration monitoring (EVM) systems applicable to fixed or rotary wing aircraft applications, with an emphasis on system design considerations. It describes EVM systems currently in use and future trends in EVM development. The broader scope of Health and Usage Monitoring Systems, (HUMS) is covered in SAE documents AS5391, AS5392, AS5393, AS5394, AS5395, AIR4174. This ARP also contains the essential elements of AS8054 which remain relevant and which have not been incorporated into Original Equipment Manufacturers (OEM) specifications.
Standard

A Guide to the Development of a Ground Station for Engine Condition Monitoring

2012-10-08
HISTORICAL
AIR4175A
An effective GSS is vital to the successful implementation of an EMS and is a fundamental part of the total monitoring system design, including asset management. Unlike the on-board part of the EMS which principally uses real time data to indicate when engine maintenance is required, a GSS can offer much greater processing power to comprehensively analyze and manipulate EMS data for both maintenance and logistics purposes. This document reviews the main EMS functions and discusses the operating requirements used to determine the basis design of a GSS, including the interfaces with other maintenance or logistic systems. A brief discussion is also included on some of the more recent advances in GSS technology that have been specifically developed to provide more effective diagnostic capabilities for gas turbine engines.
Standard

A Methodology for Quantifying the Performance of an Engine Monitoring System

2017-10-13
HISTORICAL
AIR4985
The purpose of this SAE Aerospace Information Report (AIR) is to present a quantitative approach for evaluating the performance and capabilities of an Engine Monitoring System (EMS). The value of such a methodology is in providing a systematic means to accomplish the following: 1 Determine the impact of an EMS on key engine supportability indices such as Fault Detection Rate, Fault Isolation Rate, Mean Time to Diagnose, In-flight Shutdowns (IFSD), Mission Aborts, and Unscheduled Engine Removals (UERs). 2 Facilitate trade studies during the design process in order to compare performance versus cost for various EMS design strategies, and 3 Define a “common language” for specifying EMS requirements and the design features of an EMS in order to reduce ambiguity and, therefore, enhance consistency between specification and implementation.
Technical Paper

A Miniature Dewpoint Hygrometer for Monitoring Human Environments in Space

2000-07-10
2000-01-2301
Water vapor enjoys unique importance in Earth’s atmosphere and human environments in space. In spite of this importance, humidity measurement remains a difficult technological problem, and no single instrument is optimal for all applications. We have developed and demonstrated a high-sensitivity dewpoint hygrometer in flight tests on a small radiosonde balloon and the NASA DC8. This instrument achieves fast response to atmospheric humidity by using a surface acoustic wave (SAW) device to detect condensation with much higher sensitivity than conventional optical dew detectors. An early prototype showed more than an order of magnitude faster response than chilled-mirror hygrometers in tropospheric humidity measurements on the NASA DC8. For the radiosonde experiment, we miniaturized and integrated the SAW hygrometer into a 1 kg package that includes pressure and temperature sensors, GPS, a programmable instrument controller, a high-speed radio modem, and lithium-ion batteries.
Technical Paper

A Mission Statement for Space Architecture

2003-07-07
2003-01-2431
Designing for space requires specialized knowledge of orbital mechanics, propulsion, weightlessness, hard vacuum, psychology of hermetic environments, and other topics.
Technical Paper

A Model Propulsion Simulator for Evaluating Counterrotating Blade Characteristics

1986-10-01
861715
Three Model Propulsion Simulators (MPS) were designed and built to evaluate candidate counterrotation Ultra bypass fan model blade designs of nominally 2-ft. (0.61m) tip diameter for an advanced “pusher-type” aircraft engine. ...Three Model Propulsion Simulators (MPS) were designed and built to evaluate candidate counterrotation Ultra bypass fan model blade designs of nominally 2-ft. (0.61m) tip diameter for an advanced “pusher-type” aircraft engine. These propulsion simulators (nominally 1/5 engine size) are capable of operation over a wide range of subsonic conditions and can deliver up to 750 shaft horsepower per rotor at rotor speeds of 10,000 rpm.
Technical Paper

A New Approach for Single Stage Ascent to Orbit Silane Fuel in a New Vehicle Design

2005-10-03
2005-01-3413
Spacecraft designs incorporating a propulsion system powered by a more efficient fuel would greatly reduce the oxidizer to payload ratio. ...A ceramic and alloy propulsion system takes advantage of the properties of silane, utilizing both the oxygen and the 80% nitrogen of the atmosphere for combustion.
Standard

A Process for Utilizing Aerospace Propulsion Health Management Systems for Maintenance Credit

2018-12-06
HISTORICAL
ARP5987
The process detailed within this document is generic and can be applied to commercial and military applications. It applies to the entire end-to-end health management system throughout its lifecycle, covering on-board and on-ground elements. The practical application of this standardized process is detailed in the form of a checklist. The on-board element described here are the source of the data acquisition used for off-board analysis. The on-board aspects relating to safety of flight, pilot notification, etc., are addressed by the other SAE Committees standards and documents. This document does not prescribe hardware or software assurance levels, nor does it answer the question “how much mitigation and evidence are enough”. The criticality level and mitigation method will be determined between the ‘Applicant’ and the regulator.
X