Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Multiphysics Simulation Supporting Systems Engineering for Fuel Cell Vehicles

2024-01-16
2024-26-0244
Legislative challenges, changing customer needs and the opportunities opened-up by electrification are the major driving forces in today’s automotive industry. Fuel cell vehicles offer the potential for CO2 emission free mobility, especially attractive for heavy duty long-haul range application. The development of key components of fuel cell powered vehicles, namely the fuel cell stack itself as well as the related hydrogen/air supply and thermal management sub-systems, goes hand in hand with various challenges regarding performance, lifetime and safety. The proper layout and sizing of the stack and the related fuel and air supply system components, as well as the suitable dimensioning of the cooling system, are decisive for the overall system efficiency and achievable lifetime.
Technical Paper

Thermal Propagation of Li-Ion Batteries: A Simulation Methodology for Enhanced and Accelerated Virtual Development

2022-10-05
2022-28-0101
The safety of BEVs in driving, charging and parking condition is essential for the success of electrification in automotive industry as well as key driver of any future development of Li-Ion HV battery. AVL has developed a unique simulation approach in which the multi-physical behavior of the single cell in thermal runaway is modelled and applied to module, pack or vehicle level. In addition and beside this cell behavior, various more physical phenomena during thermal propagation on pack level are considered and predicted by the simulation method: component melting, ignition and flammibilty of venting gas and HV failures.
Technical Paper

A Modular Methodology for Complete Vehicle Thermal Management Simulations

2022-08-30
2022-01-5064
Vehicle thermal management (VTM) simulations are becoming increasingly important in the development phase of a vehicle. These simulations help in predicting the thermal profiles of critical components over a drive cycle. They are usually done using two methodologies: (1) Solving every aspect of the heat transfer, i.e., convection, radiation, and conduction, in a single solver (Conjugate Heat Transfer) or (2) Simulating convection using a fluid solver and computing the other two mechanisms using a separate thermal solver (Co-simulation). The first method is usually computationally intensive, while the second one isn’t. This is because Co-simulation reduces the load of simulating all heat transfer mechanisms in a single code. This is one of the reasons why the Co-simulation method is widely used in the automotive industry. Traditionally, the methods developed for Co-simulation processes are load case specific.
Technical Paper

Time-Domain Simulation Approach for the Electromagnetically Excited Vibrations of Squirrel-Cage Induction Machine Drives under Pulse-Width Modulated Supply

2022-06-15
2022-01-0932
In this paper, the multi-physical simulation workflow from electromagnetics to structural dynamics for a squirrel-cage induction machine is explored. In electromagnetic simulations, local forces and rotor torque are calculated for specific speed-torque operation points. In order to consider non-linearities and interaction with control system as well as transmission, time-domain simulations are carried out. For induction machines, the computational effort with full transient numerical methods like finite element analysis (FEA) is very high. A novel reduced order electro-mechanical model is presented. It still accounts for vibro-acoustically relevant harmonics due to pulse-width modulation (PWM), slotting, distributed winding and saturation effects, but is substantially faster (minutes to hours instead of days to weeks per operation point).
Technical Paper

On the Different Contributions of Flexible Elements to the Structural Noise of Refrigeration Compressors

2022-06-15
2022-01-0983
Air conditioning acoustics have become of paramount importance in electric vehicles, where noise from electromechanical components is no longer masked by the presence of the internal combustion engine. In a car HVAC systems, the coolant compressor is one of the most important sources in terms of vibration and noise generation. The paper, the generated structural noise is studied in detail on a prototype installation, and the noise transmission and propagation mechanisms are analyzed and discussed. Through ”in situ” measurements and virtual point transformation, the rotor unbalance forces and torque acting within the component are identified. The dynamic properties of the rubber mounts, installed between the compressor and its support, are identified thanks to matrix inversion methods. To assess the quality of the proposed procedure, the synthesized sound pressure level is compared with experimental SPL measurements in different operational conditions.
Journal Article

Assessing Low Frequency Flow Noise Based on an Experimentally Validated Modal Substructuring Strategy Featuring Non-Conforming Grids

2022-06-15
2022-01-0939
The continuous encouragement of lightweight design in modern vehicles demands a reliable and efficient method to predict and ameliorate the interior acoustic comfort for passengers. Due to considerable psychological effects on stress and concentration, the low frequency contribution plays a vital rule regarding interior noise perception. Apart other contributors, low frequency noise can be induced by transient aerodynamic excitation and the related structural vibrations. Assessing this disturbance requires the reliable simulation of the complex multi-physical mechanisms involved, such as transient aerodynamics, structural dynamics and acoustics. The domain of structural dynamics is particularly sensitive regarding the modelling of attachments restraining the vibrational behaviour of incorporated membrane-like structures. In a later development stage, when prototypes are available, it is therefore desirable to replace or update purely numerical models with experimental data.
Technical Paper

A Time Efficient Thermal and Hydrodynamic Model for Multi Disc Wet Clutches

2022-03-29
2022-01-0647
Wet Clutches are used in automotive powertrains to enable compact designs and efficient gear shifting. During the slip phase of engagement, significant flash temperatures arise at the friction disc to separator interface because of dissipative frictional losses. An important aspect of the design process is to ensure the interface temperature does not exceed the material temperature threshold at which accelerated wear behavior and/or thermal degradation occurs. During the early stages of a design process, it is advantageous to evaluate numerous system and component design iterations exposed to plethora of possible drive cycles. A simulation tool is needed which can determine the critical operational conditions the system must survive for performance and durability to be assured. This paper describes a time-efficient multiphysics model developed to predict clutch disc temperatures with a runtime in the order of minutes.
Technical Paper

Simulation Driven Design of HVAC Systems under Competing HVAC Noise and Defrost Performance Requirements

2021-08-31
2021-01-1020
It is particularly easy to get tunnel vision as a domain expert, and focus only on the improvements one could provide in their area of expertise. To make matters worse, many Original Equipment Manufacturers (OEMs) are silo-ed by domain of expertise, unconsciously promoting this single mindedness in design. Unfortunately, the successful and profitable development of a vehicle is dependent on the delicate balance of performance across many domains, involving multiple physics and departments. Taking for instance the design of a Heating, Ventilation & Air Conditioning (HVAC) system, the device’s primary function is to control the climate system in vehicle cabins, and more importantly to make sure that critical areas on the windshield can be defrosted in cold weather conditions within regulation time. With the advent of electric and autonomous vehicles, further importance is now also placed on the energy efficiency of the HVAC, and its noise.
Technical Paper

Uncertainty Quantification in Vibroacoustic Analysis of a Vehicle Body Using Generalized Polynomial Chaos Expansion

2020-09-30
2020-01-1572
It is essential to include uncertainties in the simulation process in order to perform reliable vibroacoustic predictions in the early design phase. In this contribution, uncertainties are quantified using the generalized Polynomial Chaos (gPC) expansion in combination with a Finite Element (FE) model of a vehicle body in white. It is the objective to particularly investigate the applicability of the gPC method in the industrial context with a high number of uncertain parameters and computationally expensive models. A non-intrusive gPC expansion of first and second order is implemented and the approximation of a stochastic response process is compared to a Latin Hypercube sampling based reference solution with special regard to accuracy and computational efficiency. Furthermore, the method is examined for other input distributions and transferred to another FE model in order to verify the applicability of the gPC method in practical applications.
Technical Paper

Challenges in Vibroacoustic Vehicle Body Simulation Including Uncertainties

2020-09-30
2020-01-1571
During the last decades, big steps have been taken towards a realistic simulation of NVH (Noise Vibration Harshness) behavior of vehicles using the Finite Element (FE) method. The quality of these computation models has been substantially increased and the accessible frequency range has been widened. Nevertheless, to perform a reliable prediction of the vehicle vibroacoustic behavior, the consideration of uncertainties is crucial. With this approach there are many challenges on the way to valid and useful simulation models and they can be divided into three areas: the input uncertainties, the propagation of uncertainties through the FE model and finally the statistical output quantities. Each of them must be investigated to choose sufficient methods for a valid and fast prediction of vehicle body vibroacoustics. It can be shown by rough estimation that dimensionality of the corresponding random space for different types of uncertainty is tremendously high.
Technical Paper

Model-Based Calibration of an Automotive Climate Control System

2020-04-14
2020-01-1253
This paper describes a novel approach for modeling an automotive HVAC unit. The model consists of black-box models trained with experimental data from a self-developed measurement setup. It is capable of predicting the temperature and mass flow of the air entering the vehicle cabin at the various air vents. A combination of temperature and velocity sensors is the basis of the measurement setup. A measurement fault analysis is conducted to validate the accuracy of the measurement system. As the data collection is done under fluctuating ambient conditions, a review of the impact of various ambient conditions on the HVAC unit is performed. Correction models that account for the different ambient conditions incorporate these results. Numerous types of black-box models are compared to identify the best-suited type for this approach. Moreover, the accuracy of the model is validated using test drive data.
Technical Paper

Numerical Investigation and Experimental Comparison of ECN Spray G at Flash Boiling Conditions

2020-04-14
2020-01-0827
Fuel injection is a key process influencing the performance of Gasoline Direct Injection (GDI) Engines. Injecting fuel at elevated temperature can initiate flash boiling which can lead to faster breakup, reduced penetration, and increased spray-cone angle. Thus, it impacts engine efficiency in terms of combustion quality, CO2, NOx and soot emission levels. This research deals with modelling of flash boiling processes occurring in gasoline fuel injectors. The flashing mass transfer rate is modelled by the advanced Hertz-Knudsen model considering the deviation from the thermodynamic-equilibrium conditions. The effect of nucleation-site density and its variation with degree of superheat is studied. The model is validated against benchmark test cases and a substantiated comparison with experiment is achieved.
Technical Paper

SI Engine Combustion and Knock Modelling Using Detailed Fuel Surrogate Models and Tabulated Chemistry

2019-04-02
2019-01-0205
In the context of today’s and future legislative requirements for NOx and soot particle emissions as well as today’s market trends for further efficiency gains in gasoline engines, computational fluid dynamics (CFD) models need to further improve their intrinsic predictive capability to fulfill OEM needs towards the future. Improving fuel chemistry modelling, knock predictions and the modelling of the interaction between the chemistry and turbulent flow are three key challenges to improve the predictivity of CFD simulations of Spark-Ignited (SI) engines. The Flamelet Generated Manifold (FGM) combustion modelling approach addresses these challenges. By using chemistry pre-tabulation technologies, today’s most detailed fuel chemistry models can be included in the CFD simulation. This allows a much more refined description of auto-ignition delays for knock as well as radical concentrations which feed into emission models, at comparable or even reduced overall CFD run-time.
Technical Paper

Analytical Wall-Function Strategy for the Modelling of Turbulent Heat Transfer in the Automotive CFD Applications

2019-04-02
2019-01-0206
In contrast to the well-established “standard” log-law wall function, the analytical wall function (AWF) as an advanced modelling approach has not been extensively used in the industrial computational fluid dynamics (CFD) applications. As the model was originally developed aiming at computations on relatively coarse meshes, potential stability issues may arise due to the pressure-gradient sensitivity if employing locally inappropriate mesh layers, typically associated with the complex geometry details. This work evaluates performance of the thermal AWF, as proposed by Suga [4], in conjunction with the main flow field computed employing the k-ζ-f turbulence model and the hybrid wall treatment (denoted as AWF-e) within the Reynolds-averaged Navier-Stokes (RANS) framework.
Technical Paper

A New Approach to Model the Fan in Vehicle Thermal Management Simulations

2019-02-25
2019-01-5016
Vehicle thermal management (VTM) simulations constitute an important step in the early development phase of a vehicle. They help in predicting the temperature profiles of critical components over a drive cycle and identify components which are exceeding temperature design limits. Parts with the highest temperatures in a vehicle with an internal combustion engine are concentrated in the engine bay area. As packaging constraints grow tighter, the components in the engine bay are packed closer together. This makes the thermal protection in the engine bay even more crucial. The fan influences the airflow into the engine bay and plays an important role in deciding flow distribution in this region. This makes modelling of the fan an important aspect of VTM simulations. The challenge associated with modelling the fan is the accurate simulation of the rotation imparted by the fan to the incoming flow. Currently, two modelling approaches are prevalent in the industry.
Technical Paper

Methodology and Tools to Predict GDI Injector Tip Wetting as Predecessor of Tip Sooting

2018-04-03
2018-01-0286
With upcoming emission regulations particle emissions for GDI engines are challenging engine and injector developers. Despite the introduction of GPFs, engine-out emission should be optimized to avoid extra cost and exhaust backpressure. Engine tests with a state of the art Miller GDI engine showed up to 200% increased particle emissions over the test duration due to injector deposit related diffusion flames. No spray altering deposits have been found inside the injector nozzle. To optimize this tip sooting behavior a tool chain is presented which involves injector multiphase simulations, a spray simulation coupled with a wallfilm model and testing. First the flow inside the injector is analyzed based on a 3D-XRay model. The next step is a Lagrangian spray simulation coupled with a wallfilm module which is used to simulate the fuel impingement on the injector tip and counter-bores.
Technical Paper

Prediction of the Combustion and Emission Processes in Diesel Engines Based on a Tabulated Chemistry Approach

2017-10-08
2017-01-2200
Turbulent combustion modeling in a RANS or LES context imposes the challenge of closing the chemical reaction rate on the sub-grid level. Such turbulent models have as their two main ingredients sources from chemical reactions and turbulence-chemistry interaction. The various combustion models then differ mainly by how the chemistry is calculated (level of detail, canonical flame model) and on the other hand how turbulence is assumed to affect the reaction rate on the sub-grid level (TCI - turbulence-chemistry interaction). In this work, an advanced combustion model based on tabulated chemistry is applied for 3D CFD (computational fluid dynamics) modeling of Diesel engine cases. The combustion model is based on the FGM (Flamelet Generated Manifold) chemistry reduction technique. The underlying chemistry tabulation process uses auto-ignition trajectories of homogeneous fuel/air mixtures, which are computed with detailed chemical reaction mechanisms.
Technical Paper

Combustion System Development of a High Performance and Fuel Efficient TGDI Engine Guided by CFD Simulation and Test

2017-10-08
2017-01-2282
A TGDI (turbocharged gasoline direct injection) engine is developed to realize both excellent fuel economy and high dynamic performance to guarantee fun-to-drive. In order to achieve this target, it is of great importance to develop a superior combustion system for the target engine. In this study, CFD simulation analysis, steady flow test and transparent engine test investigation are extensively conducted to ensure efficient and effective design. One dimensional thermodynamic simulation is firstly conducted to optimize controlling parameters for each representative engine operating condition, and the results serve as the input and boundary condition for the subsequent Three-dimensional CFD simulation. 3D CFD simulation is carried out to guide intake port design, which is then measured and verified on steady flow test bench.
Technical Paper

Digital Aeroacoustics Design Method of Climate Systems for Improved Cabin Comfort

2017-06-05
2017-01-1787
Over the past decades, interior noise from wind noise or engine noise have been significantly reduced by leveraging improvements of both the overall vehicle design and of sound package. Consequently, noise sources originating from HVAC systems (Heat Ventilation and Air Conditioning), fans or exhaust systems are becoming more relevant for perceived quality and passenger comfort. This study focuses on HVAC systems and discusses a Flow-Induced Noise Detection Contributions (FIND Contributions) numerical method enabling the identification of the flow-induced noise sources inside and around HVAC systems. This methodology is based on the post-processing of unsteady flow results obtained using Lattice Boltzmann based Method (LBM) Computational Fluid Dynamics (CFD) simulations combined with LBM-simulated Acoustic Transfer Functions (ATF) between the position of the sources inside the system and the passenger’s ears.
Journal Article

Bridging the Gap between Open Loop Tests and Statistical Validation for Highly Automated Driving

2017-03-28
2017-01-1403
Highly automated driving (HAD) is under rapid development and will be available for customers within the next years. However the evidence that HAD is at least as safe as human driving has still not been produced. The challenge is to drive hundreds of millions of test kilometers without incidents to show that statistically HAD is significantly safer. One approach is to let a HAD function run in parallel with human drivers in customer cars to utilize a fraction of the billions of kilometers driven every year. To guarantee safety, the function under test (FUT) has access to sensors but its output is not executed, which results in an open loop problem. To overcome this shortcoming, the proposed method consists of four steps to close the loop for the FUT. First, sensor data from real driving scenarios is fused in a world model and enhanced by incorporating future time steps into original measurements.
X