Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Thermal Management System for Battery Electric Heavy-Duty Trucks

2024-07-02
2024-01-2971
On the path to decarbonizing road transport, electric commercial vehicles will play a significant role. The first applications were directed to the smaller trucks for distribution traffic with relatively moderate driving and range requirements, but meanwhile, the first generation of a complete portfolio of truck sizes is developed and available on the market. In these early applications, many compromises were accepted to overcome component availability, but meanwhile, the supply chain can address the specific needs of electric trucks. With that, the optimization towards higher usability and lower costs can be moved to the next level. Especially for long-haul trucks, efficiency is a driving factor for the total costs of ownership. Besides the propulsion system, all other systems must be optimized for higher efficiency. This includes thermal management since the thermal management components consume energy and have a direct impact on the driving range.
Technical Paper

Automated AI-based Annotation Framework for 3D Object Detection from LIDAR Data in Industrial Areas.

2024-07-02
2024-01-2999
Autonomous Driving is being utilized in various settings, including indoor areas such as industrial halls. Additionally, LIDAR sensors are currently popular due to their superior spatial resolution and accuracy compared to RADAR, as well as their robustness to varying lighting conditions compared to cameras. They enable precise and real-time perception of the surrounding environment. Several datasets for on-road scenarios such as KITTI or Waymo are publicly available. However, there is a notable lack of open-source datasets specifically designed for industrial hall scenarios, particularly for 3D LIDAR data. Furthermore, for industrial areas where vehicle platforms with omnidirectional drive are often used, 360° FOV LIDAR sensors are necessary to monitor all critical objects. Although high-resolution sensors would be optimal, mechanical LIDAR sensors with 360° FOV exhibit a significant price increase with increasing resolution.
Technical Paper

How Can a Sustainable Energy Infrastructure based on Renewable Fuels Contribute to Global Carbon Neutrality?

2024-07-02
2024-01-3023
Abstract. With the COP28 decisions the world is thriving for a future net-zero-CO2 society and the and current regulation acts, the energy infrastructure is changing in direction of renewables in energy production. All industry sectors will extend their share of direct or indirect electrification. The question might arise if the build-up of the renewables in energy production is fast enough. Demand and supply might not match in the short- and mid-term. The paper will discuss the roadmaps, directions and legislative boundary parameter in the regenerative energy landscape and their regional differences. National funding on renewables will gain an increasing importance to accelerate the energy transformation. The are often competing in attracting the same know-how on a global scale. In addition the paper includes details about energy conversion, efficiency as well as potential transport scenarios from production to the end consumer.
Technical Paper

Numerical Investigation of Injection and Mixture Formation in Hydrogen Combustion Engines by Means of Different 3D-CFD Simulation Approaches

2024-07-02
2024-01-3007
For the purpose of achieving carbon-neutrality in the mobility sector by 2050, hydrogen can play a crucial role as an alternative energy carrier, not only for direct usage in fuel cell-powered vehicles, but also for fueling internal combustion engines. This paper focuses on the numerical investigation of high-pressure hydrogen injection and the mixture formation inside a high-tumble engine with a conventional liquid fuel injector for passenger cars. Since the traditional 3D-CFD approach of simulating the inner flow of an injector requires a very high spatial and temporal resolution, the enormous computational effort, especially for full engine simulations, is a big challenge for an effective virtual development of modern engines. An alternative and more pragmatic lagrangian 3D-CFD approach offers opportunities for a significant reduction in computational effort without sacrificing reliability.
Technical Paper

Automated Park and Charge: Concept and Energy Demand Calculation

2024-07-02
2024-01-2988
In this paper we are presenting the concept of automated park and charge functions in different use scenarios. The main scenario is automated park and charge in production and the other use scenario is within automated valet parking in parking garages. The automated park and charge in production is developed within the scope of the publicly funded project E-Self. The central aim of the project is the development and integration of automated driving at the end-of-line in the production at Ford Motor Company's manufacturing plant in Cologne. The driving function thereby is mostly based upon automated valet driving with an infrastructure based perception and action planning. Especially for electric vehicles the state of charge of the battery is critical, since energy is needed for all testing and driving operations at end-of-line.
Technical Paper

Software-supported Processes for Aerodynamic Homologation of Vehicles

2024-07-02
2024-01-3004
Homologation is an important process in vehicle development and aerodynamics a main data contributor. The process is heavily interconnected: Production planning defines the available assemblies. Construction defines their parts and features. Sales defines the assemblies offered in different markets, where Legislation defines the rules applicable to homologation. Control engineers define the behavior of active, aerodynamically relevant components. Wind tunnels are the main test tool for the homologation, accompanied by surface-area measurement systems. Mechanics support these test operations. The prototype management provides test vehicles, while parts come from various production and prototyping sources and are stored and commissioned by logistics. Several phases of this complex process share the same context: Production timelines for assemblies and parts for each chassis-engine package define which drag coefficients or drag coefficient contributions shall be determined.
Technical Paper

Next-gen battery strategies 2027+: Potentials and challenges for future battery designs and diversification in product portfolios to serve a large bandwidth of market applications

2024-07-02
2024-01-3018
The pace of innovations in battery development is revolutionizing the landscape and opportunities for energy storage applications leading to a stronger market segmentation enabling a better suitability to fulfill specific application requirements. For automotive applications, several approaches to increase energy densities, to improve fast charging performance, and to reduce cost on a pack level are considered. Among them, a promising example is the direct integration of battery cells into the battery pack (Cell-to-pack; CTP) or vehicle (Cell-to-chassis, CTC) to increase energy densities and to reduce costs, as already commercialized by Tesla, CATL and others. In the pack development, especially Asian players are one of the frontrunners, where e.g., hybrid cell battery systems with a mixture of cells with different cathode chemistries as introduced by NIO, are experiencing a high interest of the market.
Technical Paper

Supercharger Boosting on H2 ICE for Heavy Duty applications

2024-07-02
2024-01-3006
Commercial vehicle powertrain is called to respect a challenging roadmap for CO2 emissions reduction, quite complex to achieve just improving technologies currently on the market. In this perspective alternative solutions are gaining interest, and the use of green H2 as fuel for ICE is considered a high potential solution with fast and easy adoption. NOx emission is still a problem for H2 ICE and can be managed operating the engine with lean air fuel ratio all over the engine map. This combustion strategy will challenge the boosting system as lean H2 combustion will require quite higher air flow compared to diesel for the same power density in steady state. Similar problem will show up in transient response particularly when acceleration starts from low load and the exhaust gases enthalpy is very poor and insufficient to spin the turbine. The analysis presented in this paper will show and quantify the positive impact that a supercharger has on both the above mentions problems.
Technical Paper

Traceability E-Fuels 2035

2024-07-02
2024-01-3022
EU legislation provides for only local CO2 emission-free vehicles to be allowed in individual passenger transport by 2035. In addition, the directive provides for fuels from renewable sources, i.e. defossilised fuels. This development leads to three possible energy sources or forms of energy for use in individual transport. The first possibility is charging with electricity generated from renewable sources, the second possibility is hydrogen generated from renewable sources or blue production path. The third possibility is the use of renewable fuels, also called e-fuels. These fuels are produced from atmospheric CO2 and renewable hydrogen. Possible processes for this are, for example, methanol or Fischer-Tropsch synthesis. The production of these fuels is very energy-intensive and large amounts of renewable electricity are needed.
Technical Paper

Fuel Cell Fault Simulation and Detection for On Board Diagnostics using Real-Time Digital Twins

2024-06-12
2024-37-0014
The modern automotive industry is facing challenges of ever-increasing complexity in the electrified powertrain era. On-board diagnostic (OBD) systems must be thoroughly validated and calibrated through many iterations to function effectively and meet the regulation standards. Their development and design process are more complex when prototype hardware is not available and therefore virtual testing is a prominent solution, including Software-in-the-loop (SiL) and Hardware-in-the-loop (HIL) simulations. Virtual prototype testing relying on real-time simulation models is necessary to design and test new era’s OBD systems quickly and in scale. The new fuel cell powertrain involves new and preciously unexplored fail modes. To make the system robust, simulations are required to be carried out to identify different fails.
Technical Paper

Meta Design: Next Level of Acoustic Insulation in Automotive Industry

2024-06-12
2024-01-2934
Meta material has been known for many years and the physics are well known since decades. But the challenge has always been to put the know how into (mass) production. This was the reason why no meta material has found its way into the automotive industry so far. But now things have changed: meta material became Meta Design and is going into serial production in 2024. Meta Design is a tunable spring mass system with foam acting as the spring and heavy layer as the mass. Meta Design is characterized by cavities in the foam and concentrated masses of the heavy layer as functionalized mass pins. By tuning the size of the cavities and the weight of the mass pins the acoustic performance can be adjusted to the requirements of each individual car line. After preliminary simulations, flat samples were tested in the lab. The next step was launched: the production and testing of a handmade prototype part of a firewall insulation for a Mercedes-Benz A-Class.
Technical Paper

Potential of Serial Hybrid Powertrain Concepts towards decarbonizing the Off-Highway Machinery

2024-06-12
2024-37-0018
Today’s engines used in Agriculture, Mining and Construction are designed for robustness and cost. Here, the Diesel powertrain is the established mainstream solution, offering long operation times without refueling at any desired power rating. In view of the steps towards Carbon Neutrality by 2050 this segment of the Transportation Sector needs to reduce its CO2 emissions. Currently, the EU and US emissions legislations (EU Stage V / EPA Tier4) do not include a CO2 reduction scheme but is expected to change with the next update towards EU Stage VI / EPA Tier5 coming into effect 2030 and after. Larger power and operation range still require the use of renewable, liquid fuels or hydrogen. The cost-up of such fuels could be counterbalanced by more efficient engines in combination with a hybridized powertrain.
Technical Paper

Advanced H2 ICE development aiming for full compatibility with classical engines while ensuring zero-impact tailpipe emissions

2024-06-12
2024-37-0006
The societies around the world remain far from meeting the agreed primary goal outlined under the 2015 Paris Agreement on climate change: reducing greenhouse gas (GHG) emissions to keep global average temperature rise to well below 20°C by 2100 and making every effort to stay underneath of a 1.5°C elevation. Current emissions are rebounding from a brief decline during the economic downturn related to the Covid-19 pandemic. To get back on track to support the realization of the goal of the Paris Agreement, research suggests that GHG emissions should be roughly halved by 2030 on a trajectory to reach net zero by around mid-century.2 Although these are averaged global targets, every sector and country or market can and must contribute, especially higher-income and more developed countries bear the greater capacity to act. In 2020 direct tailpipe emissions from transport represented around 8 GtC02e, or nearly 15% of total emissions.
Technical Paper

A Low-Cost System for Road Induced Tire Cavity Noise Control (RTNC)

2024-06-12
2024-01-2961
The transition from ICE to electric power trains in new vehicles along with the application of advanced active and passive noise reduction solutions has intensified the perception of noise sources not directly linked to the propulsion system. This includes road noise as amplified by the tire cavity resonance. This resonance mainly depends on tire geometry, air temperature inside the tire and vehicle speed and is increasingly audible for larger wheels and heavier vehicles, as they are typical for current electrical SUV designs. Active technologies can be applied to significantly reduce narrow band tire cavity noise with low costs and minimal weight increase. Like ANC systems for ICE powertrains, they make use of the audio system in the vehicle. In this paper, a novel low-cost system for road induced tire cavity noise control (RTNC) is presented that reduces the tire cavity resonance noise inside a car cabin.
Technical Paper

A Study on RANC Technique for Server-based Control Filter Optimization

2024-06-12
2024-01-2960
Broadband active noise control algorithms require high-performance so multi-channel control to ensure high performance, which results in very high computational power and expensive DSP. When the control filter update part need a huge computational power of the algorithm is separated and calculated by the server, it is possible to reduce cost by using a low-cost DSP in a local vehicle, and a performance improvement algorithm requiring a high computational power can be applied to the server. In order to achieve the above goal, this study analyzed the maximum delay time when communication speed is low and studied response measures to ensure data integrity at the receiving location considering situations where communication speed delay and data errors occur.
Technical Paper

Artificial Neural Network for Airborne Noise Prediction of a Diesel Engine

2024-06-12
2024-01-2929
The engine acoustic character has always represented the product DNA, owing to its strong correlation with in-cylinder pressure gradient, components design and perceived quality. Best practice for engine acoustic characterization requires the employment of a hemi-anechoic chamber, a significant number of sensors and special acoustic insulation for engine ancillaries and transmission. This process is highly demanding in terms of cost and time due to multiple engine working points to be tested and consequent data post-processing. Since Neural Networks potentially predicting capabilities are apparently un-exploited in this research field, the following paper provides a tool able to acoustically estimate engine performance, processing system inputs (e.g. Injected Fuel, Rail Pressure) thanks to the employment of Multi Layer Perceptron (MLP, a feed forward Network working in stationary points).
Technical Paper

Design and Development of Terminal Velocity Measurement System for Descending Modules

2024-06-01
2024-26-0438
Gaganyaan programme is India's prestigious human space exploration endeavour. During the re-entry of the spacecraft, achieving the minimum terminal velocity is paramount to ensure the crew's safety upon landing. Therefore, acquiring accurate in-flight velocity data is essential for comprehensively understanding the landing dynamics and facilitating post-flight data analysis and validation. Moreover, terminal velocity plays a pivotal role in the qualification of parachute systems during platform-drop tests where the objective is to minimize the terminal velocity for safe impact. Terminal velocity also serves as a critical design parameter for the crew seat attenuation system. In addition to terminal velocity, it is equally necessary to characterize the horizontal velocities acting on the decelerating body due to various factors such as parachute sway and wind drift. This data also plays a central role in refining our systems for future enhancements.
Technical Paper

Sustainable Microalgae-Membrane Photobioreactor (MPBR) System for Onboard Oxygen Production in an Aircraft

2024-06-01
2024-26-0402
The purpose of the Air Generation System is to provide a constant supply of conditioned fresh air to meet the necessary oxygen availability and to prevent carbon dioxide (CO2) concentrations for the occupants in an aircraft. The engine bleed energy or electrical load energy consumed towards this circumstance accounts to be approx. 5% of total fuel burn and in turn, contributes to the global emissions of greenhouse gases. This paper studies the improvement areas of the present conventional system such as fuel burn consumption associated with an aircraft environmental control system (ECS) depending on, the amount of bleed and ram air usage, electric power consumption. Improved systems for propulsion, power generation, sustainability, hybridization, and environmental control can be desirable for an aircraft.
Technical Paper

Selective Laser Melting Based Additive Manufacturing Process Diagnostics using In-line Monitoring Technique and Laser-Material Interaction Model

2024-06-01
2024-26-0420
Selective Laser Melting (SLM) has gained widespread usage in aviation, aerospace, and die manufacturing due to its exceptional capacity for producing intricate metal components of highly complex geometries. Nevertheless, the instability inherent in the SLM process frequently results in irregularities in the quality of the fabricated components. As a result, this hinders the continuous progress and wider acceptance of SLM technology. Addressing these challenges, in-process quality control strategies during SLM operations have emerged as effective remedies for mitigating the quality inconsistencies found in the final components. This study focuses on utilizing optical emission spectroscopy and IR thermography to continuously monitor and analyze the SLM process within the powder bed, with the aim of strengthening process control and minimizing defects.
Technical Paper

Development of an Autonomous Blimp (Airship) for Indoor Navigation

2024-06-01
2024-26-0436
Uncrewed Aerial vehicles are useful for a multitude of applications in today’s age, covering a wide variety of fields such as defense, environmental science, meteorology, emergency responders, search and rescue operations, entertainment robotics, etc. Different types of aircrafts such as fixed wing UAVs, rotor wing UAVs are used for the mentioned applications depending upon the application requirements. One such category of UAVs is the lighter-than-air aircrafts, that provide their own set of advantages over the other types of UAVs. Blimps are among the participants of the lighter-than-air category that are expected to offer advantages such as higher endurance and range, and safer and more comfortable Human-machine-Interaction, etc. as compared to fixed wing and rotor wing UAVs due to their design. A ROS (Robot Operating System) based control system was developed for controlling the blimp.
X