Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development and Validation of a Reduced Chemical Kinetic Mechanism of Dimethyl Carbonate and Ethylene Carbonate

2024-04-09
2024-01-2085
With the rapid development of electric vehicles, the demands for lithium-ion batteries and advanced battery technologies are growing. Today, lithium-ion batteries mainly use liquid electrolytes, containing organic compounds such as dimethyl carbonate and ethylene carbonate as solvents for the lithium salts. However, when thermal runaway occurs, the electrolyte decomposes, venting combustible gases that could readily be ignited when mixed with air and leading to pronounced heat release from the combustion of the mixture. So far, the chemical behavior of electrolytes during thermal runaway in lithium-ion batteries is not comprehensively understood. Well-validated compact chemical kinetic mechanisms of the electrolyte components are required to describe this process in CFD simulations. In this work, submechanisms of dimethyl carbonate and ethylene carbonate were developed and adopted in the Ansys Model Fuel Library (MFL).
Technical Paper

Capturing Combustion Chemistry of Carbon-Neutral Transportation Fuels with a Library of Model Fuels

2023-09-29
2023-32-0001
Carbon-neutral (CN) fuels will be part of the solution to reducing global warming effects of the transportation sector, along with electrification. CN fuels such as hydrogen, ammonia, biofuels, and e-fuels can play a primary role in some segments (aviation, shipping, heavy-duty road vehicles) and a secondary role in others (light-duty road vehicles). The composition and properties of these fuels vary substantially from existing fossil fuels. Fuel effects on performance and emissions are complex, especially when these fuels are blended with fossil fuels. Predictively modeling the combustion of these fuels in engine and combustor CFD simulations requires accurate representation of the fuel blends. We discuss a methodology for matching the targeted fuel properties of specific CN fuels, using a blend of surrogate fuel components, to form a fuel model that can accurately capture fuel effects in an engine simulation.
Technical Paper

IMPACT: Numerical Study of Aerodynamics of an Iced Forward-Swept Tail with Leading Edge Extension

2023-06-15
2023-01-1371
In-flight icing significantly influences the design of large passenger aircraft. Relevant aspects include sizing of the main aerodynamic surfaces, provision of anti-icing systems, and setting of operational restrictions. Empennages of large passenger aircraft are particularly affected due to the small leading edge radius, and the requirement to generate considerable lift for round out and flare, following an extended period of descent often in icing conditions. This paper describes a CFD-based investigation of the effects of sweep on the aerodynamic performance of a novel forward-swept horizontal stabilizer concept in icing conditions. The concept features an unconventional forward sweep, combined with a high lift leading edge extension (LEX) located within a fuselage induced droplet shadow zone, providing passive protection from icing.
Technical Paper

Icing Simulation Results Using Lagrangian Particle Tracking in Ansys Fluent Icing

2023-06-15
2023-01-1478
This paper introduces the Lagrangian particle tracking technology readily available in Ansys Fluent in the in-flight icing simulation workflow, which normally uses the Eulerian approach for droplet flows. The Lagrangian solver is incorporated in the Fluent Icing workspace which is to become the next-gen in-flight icing simulation tool provided by Ansys. Lagrangian tracking will eventually be used for SLD and ice crystal rebound and re-impingement calculations in the Ansys workflow. Here we introduce some preliminary results with the current state of its implementation as of Fluent Icing release 2023R2. Example cases include several selections from the 1st Ice prediction workshop with experimental comparisons as well as results obtained earlier with the Eulerian droplet solution strategy. Collection efficiency comparisons on clean geometries show good agreement between Eulerian and Lagrangian methods when the particle seeds are in the millions range.
Technical Paper

A Three-Layer Model for Ice Crystal Icing in Aircraft Engines

2023-06-15
2023-01-1481
This paper presents the current state of a three-layer surface icing model for ice crystal icing risk assessment in aircraft engines, being developed jointly by Ansys and Honeywell to account for possible heat transfer from inside an engine into the flow path where ice accretion occurs. The bottom layer of the proposed model represents a thin metal sheet as a substrate surface to conductively transfer heat from an engine-internal reservoir to the ice layer. The middle layer is accretion ice with a porous structure able to hold a certain amount of liquid water. A shallow water film layer on the top receives impinged ice crystals. A mass and energy balance calculation for the film determines ice accretion rate. Water wicking and recovery is introduced to transfer liquid water between film layer and porous ice accretion layer.
Technical Paper

Numerical Study of Iced Swept-Wing Performance Degradation using RANS

2023-06-15
2023-01-1402
This paper studies the level of confidence and applicability of CFD simulations using steady-state Reynolds-Averaged Navier-Stokes (RANS) in predicting aerodynamic performance losses on swept-wings due to contamination with ice accreted in-flight. The wing geometry selected for the study is the 65%-scale Common Research Model (CRM65) main wing, for which NASA Glenn Research Center’s Icing Research Tunnel has generated experimental ice shapes for the inboard, mid-span, and outboard sections. The reproductions at various levels of fidelity from detailed 3D scans of these ice shapes have been used in recent aerodynamic testing at the Office National d’Etudes et Recherches Aérospatiales (ONERA) and Wichita State University (WSU) wind tunnels. The ONERA tests were at higher Reynolds number range in the order of 10 million, while the WSU tests were in the order of 1 million.
Journal Article

Thermal Reduced Order Modeling for System Analysis of EV Battery

2023-04-11
2023-01-0931
The safety, performance, and operational life of power dense Lithium-ion batteries used in Hybrid and Electric Vehicles are dependent on the operating temperature. Modeling and simulation are essential tools used to accelerate the design process of optimal thermal management systems. However, high-fidelity 3D computational fluid dynamics (CFD) simulation of such systems is often difficult and computationally expensive. In this paper, we demonstrate a multi-part coupled system model for simulating the heating/cooling system of the traction battery at a module level. We have reduced computational time by employing reduced-order modeling (ROM) framework on separate 3D CFD models of the battery module and the cooling plate. The order of the thermal ROM has also been varied to study the trade-off between accuracy, fidelity, and complexity. The ROMs are bidirectionally coupled to an empirical battery model built from in-house test data.
Journal Article

Ansys Driver Development: A General Purpose Driver for Handling and Rough Road Simulations

2023-04-11
2023-01-0776
A driver model in multibody dynamic analysis software is to run a vehicle dynamics model in various customer applications: handling events such as lane changes and circle turns, and durability events such as Belgian blocks, hill courses, driveways, and race tracks. Ansys Motion is a robust multibody dynamic analysis software for many applications including vehicle dynamics simulations. This paper discusses Ansys Driver development in Ansys Motion. It addresses developments of critical driver features: identification of vehicle handling capability, a path planning from complex road profiles, an analog filter design, and a longitudinal and lateral control of vehicle models. It also discusses how to achieve the robustness of the driver model for various customer simulation scenarios not affecting simulation output due to too much driver control. This study presents a couple of examples of handling and durability event simulations.
Technical Paper

Design and Optimization of a P4 mHEV Powertrain

2022-03-29
2022-01-0669
The EcoCAR Mobility Challenge (EMC) is the latest edition of the Advanced Vehicle Technology Competition (AVTC) series sponsored by the US Department of Energy. This competition challenges 11 North American universities to redesign a stock 2019 Chevrolet Blazer into an energy-efficient, SAE level 2-autonomous mild hybrid electric vehicle (mHEV) for use in the Mobility as a Service (MaaS) market. The Mississippi State University (MSU) team designed a P4 electric powertrain with an 85kW (113.99 HP) permanent magnet synchronous machine (PMSM) powered by a custom 5.4 kWh lithium-ion energy storage system. To maximize energy efficiency, Model Based Design concepts were leveraged to optimize the overall gear ratio for the P4 system. To accommodate this optimized ratio in the stock vehicle, a custom offset gearbox was designed that links the PMSM to the rear drive module.
Technical Paper

Non-Equilibrium Law-of-the-Wall Modeling for Improved Heat Transfer Predictions: Model Development and Validation

2022-03-29
2022-01-0405
A one-dimensional, non-equilibrium, compressible law of the wall model is proposed to increase the accuracy of heat transfer predictions from computational fluid dynamics (CFD) simulations of internal combustion engine flows on engineering grids. Our 1D model solves the transient turbulent Navier-Stokes equations for mass, momentum, energy and turbulence under the thin-layer assumption, using a finite-difference spatial scheme and a high-order implicit time integration method. A new algebraic eddy-viscosity closure, derived from the Han-Reitz equilibrium law of the wall, with enhanced Prandtl number sensitivity and compressibility effects, was developed for optimal performance. Several eddy viscosity sub-models were tested for turbulence closure, including the two-equation k-epsilon and k-omega, which gave insufficient performance.
Technical Paper

Multiphysics Simulation of Electric Motor NVH Performance with Eccentricity

2021-08-31
2021-01-1077
With the emphasis of electrification in automotive industry, tremendous efforts are made to develop electric motors with high efficiency and power density, and reduce noise, vibration and harshness (NVH). A multiphysics simulation workflow is used to predict the eccentricity-induced noise for GM’s Bolt EV motor. Both static and dynamic eccentricities are investigated along with axial tilt. Analysis results show that these eccentricities play a critical role in the NVH behavior of the motor assembly. Transient electromagnetic (EM) analysis is performed first by extruding 2D stator and rotor sections to form 3D EM models. Sector model is duplicated to form full 360-degree model. Stator is split into three rotated sections to characterize stator skew, and the skew between two sections of rotor and magnets are also modelled. Sinusoidal current is applied and lumped-sum forces on each stator tooth are computed.
Technical Paper

Predicting the Combustion Behavior in a Small-Bore Diesel Engine

2021-04-06
2021-01-0508
Accurate modeling of the characteristics of diesel-engine combustion leads to more efficient design. Accurate modeling in turn depends on correctly capturing spray dynamics, turbulence, and fuel chemistry. This work presents a computational fluid dynamics (CFD) investigation of a well characterized small-bore direct injection diesel engine at Sandia National Laboratories’ Combustion Research Facility. The engine has been studied for two piston-bowls geometries and various injection timings. Simulation of these conditions test the predictive capabilities of our approach to diesel engine modeling using Ansys Forte. An experimental database covering a wide range of operating conditions is provided by the Engine Combustion Network for this engine, which is used to validate our modeling approach. Automatic and solution-adaptive meshing is used, and the recommended settings are discussed.
Technical Paper

Validation Studies of a Detailed Soot Chemistry for Gasoline and Diesel Engines

2021-04-06
2021-01-0618
Accurately predicting the evolution of soot mass and soot particle numbers under engine conditions is critical to advanced engine design. A detailed soot-chemistry model that can capture soot under gasoline and diesel conditions without tuning is necessary for such predictions. Building confidence in the predictive usage of the chemistry in engine simulations requires validating the soot kinetics over a wide range of operating conditions and fuels, using data from different experimental techniques, and using sources from laboratory flames to engines. This validation study focuses on a soot-chemistry model that considers multiple nucleation, growth, and oxidation reaction pathways. It involves 14 gas-phase precursors and considers the effect of different soot-particle surface sites.
Technical Paper

Multi-Objective Aerodynamic Optimization of Vehicle Shape Using Adjoint Approach Based on Steady-State and Transient Flow Solutions

2021-04-06
2021-01-0945
In order to achieve the purpose of saving energy and reducing emission, the improvement of aerodynamic performance plays an increasingly crucial role for car manufacturers. Previous studies have confirmed the validity of gradient-based adjoint algorithm for its high efficiency in shape optimization. In this paper, two important aspects of adjoint approach were explored. One is vehicle aerodynamic optimization with multiple objectives, and the other is using time-averaged flow results as the primal solution, both are issues of high interest in recent applications. First, adjoint shape optimization with steady-state and time-averaged flow simulations were respectively calculated and comparatively discussed based on a production SUV. The shape modifications of the two cases indicated that the impact of primal solution on design change could not be neglected, due to the different intrinsic codes of steady and transient turbulence models.
Technical Paper

Accelerometer-Based Estimation of Combustion Features for Engine Feedback Control of Compression-Ignition Direct-Injection Engines

2020-04-14
2020-01-1147
An experimental investigation of non-intrusive combustion sensing was performed using a tri-axial accelerometer mounted to the engine block of a small-bore high-speed 4-cylinder compression-ignition direct-injection (CIDI) engine. This study investigates potential techniques to extract combustion features from accelerometer signals to be used for cycle-to-cycle engine control. Selection of accelerometer location and vibration axis were performed by analyzing vibration signals for three different locations along the block for all three of the accelerometer axes. A magnitude squared coherence (MSC) statistical analysis was used to select the best location and axis. Based on previous work from the literature, the vibration signal filtering was optimized, and the filtered vibration signals were analyzed. It was found that the vibration signals correlate well with the second derivative of pressure during the initial stages of combustion.
Technical Paper

Emissions Benefits of Group Hole Nozzle Injectors under Conventional Diesel Combustion Conditions

2020-04-14
2020-01-0302
This work explores the effectiveness of common rail fuel injectors equipped with Grouped Hole Nozzles (GHNs) in aiding the mixing process and reducing particulate matter (PM) emissions of Conventional Diesel Combustion (CDC) engines, while maintaining manageable Oxides of Nitrogen (NOx) levels. Parallel (pGHN), converging (cGHN) and diverging (dGHN) - hole GHNs were studied and the results were compared to a conventional, single hole nozzle (SHN) with the same flow area. The study was conducted on a single cylinder medium-duty engine to isolate the effects of the combustion from multi-cylinder effects and the conditions were chosen to be representative of a typical mid-load operating point for an on-road diesel engine. The effects of injection pressure and the Start of Injection (SOI) timing were explored and the tradeoffs between these boundary conditions are examined by using a response surface fitting technique, to identify an optimum operating condition.
Technical Paper

Aerodynamic Optimization of Vehicle Configuration Based on Adjoint Method

2020-04-14
2020-01-0915
Due to the increasingly stringent environmental regulations all around the world confronted by exhaust emission and energy consumption, improving fuel economy has been the top priority for most automotive manufacturers. In this context, the basic process for vehicle shape development has evolved into optimizing the design to achieve better aerodynamic characteristics, especially drag reduction. Of all the optimization approaches, the gradient-based adjoint method has currently received extensive attention for its high efficiency in calculating the objective sensitivity with respect to geometry parameters, which is the first and foremost step for subsequent shape modification. In this work, the main goal is to explore the adjoint method through optimizing the vehicle shape for a lower drag based on a production SUV. Firstly, the influence of different mesh schemes was discussed on sensitivity prediction of aerodynamic drag.
Technical Paper

Multi-Shot Icing Simulations with Automatic Re-Meshing

2019-06-10
2019-01-1956
A full-automated CFD mesh generation technique has been developed and implemented for 3-D aircraft icing simulations to permit robust 45-minute ice accretion simulations in support of icing certification campaigns. The changes in the shape of the aircraft surfaces due to accreting ice and their effects on the air and droplet flow are accounted for in a quasi-steady manner by subdividing the total icing time into sequential steps of shorter duration, updating the computational grid at each step. This “multi-shot” ice accretion approach requires robust and accurate grid re-meshing for it to be embedded in engineering design and analysis workflows. ANSYS FENSAP-ICE has been coupled to Fluent Meshing to take advantage of generic and highly automated surface displacement and mesh wrapping tools. A wide spectrum of geometries is supported, ranging from full-size aircraft to air data probes, turbomachinery components, rotors and propellers.
Technical Paper

Numerical Simulation of Aircraft and Variable-Pitch Propeller Icing with Explicit Coupling

2019-06-10
2019-01-1954
A 3D CFD methodology is presented to simulate ice build-up on propeller blades exposed to known icing conditions in flight, with automatic blade pitch variation at constant RPM to maintain the desired thrust. One blade of a six-blade propeller and a 70-passenger twin-engine turboprop are analyzed as stand-alone components in a multi-shot quasi-steady icing simulation. The thrust that must be generated by the propellers is obtained from the drag computed on the aircraft. The flight conditions are typical for a 70-passenger twin-engine turboprop in a holding pattern in Appendix C icing conditions: 190 kts at an altitude of 6,000 ft. The rotation rate remains constant at 850 rpm, a typical operating condition for this flight envelope.
Technical Paper

Numerical Modelling of Primary and Secondary Effects of SLD Impingement

2019-06-10
2019-01-2002
A CFD simulation methodology for the inclusion of the post-impact trajectories of splashing/bouncing Supercooled Large Droplets (SLDs) and film detachment is introduced and validated. Several scenarios are tested to demonstrate how different parameters affect the simulations. Including re-injecting droplet flows due to splashing/bouncing and film detachment has a significant effect on the accuracy of the validations shown in the article. Validation results demonstrate very good agreement with the experimental data. This approach is then applied to a full-scale twin-engine turboprop to compute water impingement on the wings and the empennage.
X