Refine Your Search

Topic

Author

Search Results

Technical Paper

Transient Numerical Analysis of a Dissipative Expansion Chamber Muffler

2024-06-12
2024-01-2935
Expansion chamber mufflers are commonly applied to reduce noise in HVAC. Dissipative materials, such as microperforated plates (MPPs), are often applied to achieve a more broadband mitigation effect. Such mufflers are typically characterized in the frequency domain, assuming time-harmonic excitation. From a computational point of view, transient analyses are more challenging. A transformation of the equivalent fluid model or impedance boundary conditions into the time domain induces convolution integrals. We apply the recently proposed finite element formulation of a time domain equivalent fluid (TDEF) model to simulate the transient response of dissipative acoustic media to arbitrary unsteady excitation. As most time domain approaches, the formulation relies on approximating the frequency-dependent equivalent fluid parameters by a sum of rational functions composed of real-valued or complex-conjugated poles.
Technical Paper

Metrics based design of electromechanical coupled reduced order model of an electric powertrain for NVH assessment

2024-06-12
2024-01-2913
Electric vehicles offer cleaner transportation with lower emissions, thus their increased popularity. Although, electric powertrains contribute to quieter vehicles, the shift from internal combustion engines to electric powertrains presents new Noise, Vibration, and Harshness challenges. Unlike traditional engines, electric powertrains produce distinctive tonal noise, notably from motor whistles and gear whine. These tonal components have frequency content, sometimes above 10 kHz. Furthermore, the housing of the powertrain is the interface between the excitation from the driveline via the bearings and the radiated noise (NVH). Acoustic features of the radiated noise can be predicted by utilising the transmitted forces from the bearings. Due to tonal components at higher frequencies and dense modal content, full flexible multibody dynamics simulations are computationally expensive.
Technical Paper

Synergizing Efficiency and Silence: A Novel Approach to E-Machine Development

2024-06-12
2024-01-2914
Traditionally, Electric Machine design has primarily focused on factors like efficiency, packaging, and cost, often neglecting the critical aspects of Noise, Vibration, and Harshness (NVH) in the early decision-making stages. This disconnect between E-Machine design teams and NVH teams has consistently posed a challenge. This paper introduces an innovative workflow that unifies these previously separate domains, facilitating comprehensive optimization by seamlessly integrating NVH considerations with other E-Machine objectives, such as electromagnetic compatibility (EMC). This paper highlights AVL's approach in achieving this transformation and demonstrates how this integrated approach sets a new standard for E-Machine design. The presented approach relies on AI-driven algorithms and computational tools.
Technical Paper

Computational Study of a DrivAer Model by Using the Partially-Averaged Navier-Stokes Approach in Combination with the Immersed Boundary Method

2024-04-09
2024-01-2527
This paper presents calculations of external car aerodynamics by using the Partial-Averaged Navier-Stokes (PANS) variable resolution model in conjunction with the Finite Volume (FV) immersed-boundary method. The work presented here is the continuation of the study reported in Basara et al. [1, 2]. In that work, it was shown that the same accuracy of predicted aerodynamic forces could be achieved for both types of computational meshes, the standard body-fitted mesh and the immersed boundary (IB) Cartesian mesh, by using the Reynolds-Averaged Navier-Stokes (RANS) k-ζ-f model as well as by using the Partially-Averaged Navier-Stokes (PANS) method. Based on the accuracy achieved, Basara et al. [2] concluded that further work could focus on evaluating the turbulence modelling on the immersed boundary meshes only.
Technical Paper

Brake Emission Testing Process – Assuring Repeatability and Reproducibility of Emission Measurement Results

2023-11-05
2023-01-1876
Non-exhaust emissions are clearly one of the focal points for the upcoming Euro 7 legislation. The new United Nations Global Technical Regulation (UN GTR) defining the framework for brake emission measurements is about to be officially published. The first amendment to this text is already on the way through the United Nations Economic Commission for Europe (UNECE) hierarchy for decision making. In real life, the final emission factor as the ultimate result of a test is influenced by inaccuracies of numerous parts of the measurement system as well as additional contributing factors like the performance of the particulate filter handling process, which might not be primarily related to equipment specifications.
Technical Paper

Hardware-in-the-Loop Testing for Optimizing Inverter Performance in Electric Vehicles

2023-08-28
2023-24-0178
In recent years, the use of high-power inverters has become increasingly prevalent in vehicles applications. With the increasing number of electric vehicle models comes the need for efficient and reliable testing methods to ensure the proper functioning of these inverters. One such method is the use of Hardware-in-the-Loop (HiL) environments, where the inverter is connected to a simulated environment to test its performance under various operating conditions. HiL testing allows for faster and more cost-effective testing than traditional methods and provides a safe environment to evaluate the inverter's response to different scenarios. Further, in such an environment, it is possible to specifically stimulate those system states in which conflicts between the lines arise regarding the ideal system parametrization. By combining HiL testing with design-of-experiments and modelling methods, the propulsion system can hence be optimized in a holistic manner.
Technical Paper

Specialised Gear Rig for the Assessment of Loaded Transmission Error, Line of Action and Summarized Mesh Point

2023-04-11
2023-01-0463
Within gear pair development, the simulation of loaded transmission error, line of action and summarized mesh point are crucial information in design optimization as well as reliability, NVH and efficiency prediction. These properties and variables are difficult to evaluate and are usually only assessed through proxy-variables such as unloaded transmission error or contact pattern assessment. Alternatively, large design loops can be generated when prototypes are produced to directly assess the results of reliability, NVH and efficiency and simulation models updated to the results, but not directly calibrated. This work will showcase an advanced test facility with the unique capabilities to evaluate all gear contact types (including hypoid, beveloid, cylindrical and spiral) under loaded conditions while assessing position and force data that can be used to validate simulation models directly and enhance design development.
Technical Paper

Vehicle Class Based Validation Program for Electrified Powertrain Vibration Testing

2023-04-11
2023-01-0920
Vibration testing is common in automotive industry validation and gains greater significance with increasing numbers of electrical components, which are particularly suspectable to vibration related failures. While the nature and intention of vibration testing is common, many contradicting testing standards claim to be a one-size-fits-all solution, leading to questions of which standard is correct for any specific application. This is compounded by the vast variation in vehicle types and applications (suspension systems, dampers, powertrain mass, tire radius, intended usage, etc.) This paper seeks to offer and demonstrate a method to determine characteristic vibration profiles, based on vehicle classes, and illuminate the process to accelerate these to an appropriate test profile. This can either be used to directly validate a system or to support the selection of the most appropriate vibration profile from options within standards.
Technical Paper

Lubrication Testing Methodology for Vehicle Class and Usage Based Validation

2022-08-30
2022-01-1101
System lubrication in automotive powertrains is a growing topic for development engineers. Hybrid and pure combustion system complexity increases in search of improved efficiency and better control strategy, increasing the number of components with lubrication demand and the interplay between them, while fully electric systems drive for higher input speeds to increase e-motor efficiency, increasing bearing and gear feed rate demands. Added to this, many e-axle and hybrid systems are in development with a shared medium and circuit for e-motor cooling and transmission lubrication. Through all this, the lubricant forms a common thread and is a fundamental component in the system, but no standardized tests can provide a suitable methodology to investigate the adequate lubrication of components at powertrain level, to support the final planned vehicle usage.
Technical Paper

Performance Analysis of Immersed Boundary Method for Predicting External Car Aerodynamics

2022-03-29
2022-01-0889
This paper presents calculations of external car aerodynamics by using the finite volume (FV) immersed-boundary method. The FV numerical codes primarily employ Reynolds-Averaged Navier-Stokes (RANS) models. In recent years, and due to possibility to run very large computational meshes, these models are usually used in conjunction with the advanced near-wall models. Moreover, it has been often demonstrated that the accuracy of RANS near-wall models relies on the mesh quality near the wall so by the rule, larger number of wall body-fitted cell-layers are employed. An immersed boundary (IB) method becomes an attractive alternative to the ‘standard’ FV approaches especially when applied to low quality CAD data. In general, the IB method is less investigated and validated for the car aerodynamics, particularly in conjunction with advanced near-wall turbulence models and an adaptive mesh refinement (AMR).
Technical Paper

21SIAT-0638 - Fleet Analytics - A Data-Driven and Synergetic Fleet Validation Approach

2021-09-22
2021-26-0499
Current developments in automotive industry such as hybrid powertrains and the continuously increasing demands on emission control systems, are pushing complexity still further. Validation of such systems lead to a huge amount of test cases and hence extreme testing efforts on the road. At the same time the pressure to reduce costs and minimize development time is creating challenging boundaries on development teams. Therefore, it is of utmost importance to utilize testing and validation prototypes in the most efficient way. It is necessary to apply high levels of instrumentation and collect as much data as possible. And a streamlined data pipeline allows the fleet managers to get new insights from the raw data and control the validation vehicles as well as the development team in the most efficient way. In this paper we will demonstrate a data-driven approach for validation testing.
Technical Paper

Hybrid-Powertrain Development Approach to Reduce Number of Prototype Vehicles by Taking Right Decision in Early Development Phases on Engine Testbeds

2021-09-22
2021-26-0449
Today’s automotive industry is changing rapidly towards environmentally friendly vehicle propulsion systems. All over the globe, legislative CO2 consumption targets are under discussion and partly already in force. Hybrid powertrain configurations are capable to lower fuel consumption and limit pollutant emissions compared to pure IC-Engine driven powertrains. Depending on boundary conditions a numerous of different hybrid topologies- and its control strategies are thinkable. Typical approach is to find the optimum hybrid layout and strategy, by performing certain technical design tasks in office simulation directly followed by vehicle prototype tests on the chassis dyno and road. This leads to a high number of prototype vehicles, overload on chassis dynos, time consuming road test and finally to tremendous costs. Our developed approach is using the engine testbed with simulation capabilities as bridging element between office and vehicle development environment.
Journal Article

Tailored ADAS Functions Fulfilling Local Market Expectations - Time Saving Approach without Compromising the Performance Quality

2021-09-22
2021-26-0038
Modern safety and comfort features must behave country specific to the local environment and traffic conditions in order to gain end consumers’ trust and strengthening OEMs market success respectively. In order to achieve this, a new methodology was developed. In this paper, the approach for designing advanced driving assistance systems (ADAS) with a tailored controller behavior optimized for country specific market expectations like in India is described. Furthermore, the definition of objective performance and calibration targets with automated evaluation of target fulfillment will be deeply discussed. The method is focused on saving time at calibration and validation without compromising the quality of ADAS features. Local market specific driving behavior is investigated and measurement data from real-world driving collected. Data clustering via maneuver detection is performed automatically, which is saving time and effort.
Technical Paper

Automated Test Case Generation and Virtual Assessment Framework for UN Regulation on Automated Lane Keeping Systems

2021-04-06
2021-01-0870
Validation of highly automated or autonomous vehicles is nowadays still a major challenge for the automotive industry. Furthermore, the homologation of ADAS/AD vehicles according to global regulations is getting more essential for their safe development and deployment around the world. In order to assure that the autonomous driving function is able to cope with the huge number of possible situations during operation, comprehensive testing of the functions is required. However, conventional testing approaches such as driving distance-based validation approach in the real world, can be time- and cost-consuming. Therefore, a scenario-based virtual validation and testing method is considered to be a proper solution. In this paper, we propose a virtual assessment framework using a fully automated test case generation method. This framework is embedded into the continuous development and validation process.
Technical Paper

HEV Evaluation in Simulation Phase Based on Predicted Sound Behavior

2020-09-30
2020-01-1511
Grown interest in complex modern Hybrid Electric Vehicle (HEV) concepts has raised new challenges in the field of NVH. The switch between the Internal Combustion Engine (ICE) and the Electric Motor (EM) at low speeds produces undesirable vibrations and a sudden raise of noise levels that effects the sound quality and passenger comfort achieved by the close-to-silent electric powertrain operation. Starting the ICE in the most suitable driving situation to create a seamless transition between driving modes can be the key to minimize the NVH quality impact in driver and passenger’s perception in HEVs. To integrate this important aspect in the early stages of the development and design phase, simulation technologies can be used to address the customer acceptance. By analyzing NVH measurements, the different noise components of the vehicle operation can be separated into ICE-related noise, EM-related noise and driving noise.
Technical Paper

Root Cause Analysis and Structural Optimization of E-Drive Transmission

2020-09-30
2020-01-1578
This paper describes the simulation tool chain serving to design and optimize the transmission of an electric axle drive from concept to final design with respect to NVH. A two-stage transmission of an eAxle is designed from scratch by the initial layout of gears and shafts, including the optimization of gear micro geometry. After the shaft system and bearings are defined, the concept design of the transmission housing is evaluated with the help of a basic topology optimization regarding stiffness and certain eigenfrequencies. In the next step a fully flexible multi-body dynamic (MBD) and acoustic analysis of the transmission is performed using internally calculated excitations due to gear contact and bearing interaction with shaft and gear dynamics for the entire speed and load range. Critical operating conditions in terms of shaft dynamics, structure borne noise and noise radiation are evaluated and selected as target for optimization in the following steps.
Technical Paper

Advanced CAE Methods for NVH Development of High-Speed Electric Axle

2020-09-30
2020-01-1501
The rate in the electrification of vehicles has risen in recent years. With intensified development more and more attention is paid to the noise and vibration in such vehicles especially from the EDU (Electric Drive Unit). In this paper the main NVH simulation process of a high-speed E-axle up to 30,000 rpm for premium class vehicle application is presented. The high speed, high-power density and lightweight design introduces new challenges. Benchmarking of different EDUs and vehicles leads to targets which can be used at the early stage of development as subsystem targets. This paper shows the CAE methodology which can be used to verify the design and guarantee the target achievement. Using CAE both source and structure can be optimized to improve the NVH behavior.
Technical Paper

Powertrain Calibration Techniques

2019-09-09
2019-24-0196
Meeting the particle number (PN) emissions limits in vehicle test sequences needs specific attention on each power variation event occurring in the internal combustion engine (ICE). ICE power variations arise from engine start onwards along the entire test drive. In hybrid systems, there is one further source for transient ICE response: each power shift between E-motor and ICE introduces gas flow variations with subsequent temperature response in the ICE and in the engine aftertreatment system (EAS). This bears consequences for engine out emissions as well as for the EAS efficiency and even for the durability of a catalytic converter. As system calibration engineers must decide on numerous actuator parameters, their decisions, finally, are crucial for meeting legislative limits under the boundary conditions given by the hybrid vehicle’s drive environment.
Technical Paper

Power Electronic Noise-Simulation Measurement Comparison

2019-06-05
2019-01-1451
A growing development of hybrid or fully electrical drives increases the demand for an accurate prediction of noise and vibration characteristics of electric and electronic components. This paper describes the numerical and experimental investigation of noise emissions from power electronics, as one of the new important noise sources in electric vehicles. The noise emitted from the printed circuit board (PCB) equipped with multi-layer ceramic capacitors (MLCC) is measured and used for the calibration and validation of numerical model. Material properties are tuned using results from experimental modal analysis, with special attention to the orthotropic characteristic of the PCB glass-reinforced epoxy laminate sheet (FR-4). Electroacoustic excitation is pre-calculated using an extension of schematic-based EMC simulation and applied to the structural model. Structural vibrations are calculated with a commercial FEM solver with the modal frequency response analysis.
Technical Paper

Dual Mode VCS Variable Compression System - System Integration and Vehicle Requirements

2019-04-02
2019-01-0248
Future legislation scenarios as well as stringent CO2 targets, in particular under real driving conditions, will require the introduction of new and additional powertrain technologies. Beside the increasing electrification of the powertrain, it will be essential to utilize the full potential of the Internal Combustion Engine (ICE). There is clearly a competition of new and different ICE-Technologies [1] including VCR. VCR systems are expected to be introduced to a considerable number of next generation turbocharged Spark Ignited (SI) engines in certain vehicle classes. The implementation of Miller or Atkinson cycles is an essential criterion for increased geometric Compression Ratio (CR). The DUAL MODE Variable Compression System (VCS)TM enables a 2-stage variation of the connecting rod length and thus of the compression ratio (CR).
X