Refine Your Search

Topic

Author

Search Results

Technical Paper

Design and Development of E-axle as a Retro and OE Fitment Solution for Light Commercial Vehicles Ranging from 1.5 to 5 Ton GVW

2024-01-16
2024-26-0119
The Light commercial vehicle (LCV) is primarily used for the last mile delivery and it hold the volume share of around 61% in the commercial vehicle segment. The last mile delivery services have seen a massive surge after the CoVID 19 pandemic resulting is the increase sale of LCV in last few years and is expected to grow further by 8-11% in the coming years. However, city logistic is also responsible for most pollution and noise in the city. Hence, policymakers are aiming to reduce carbon footprint by promoting the use of Electric vehicle by providing incentive to automakers though schemes like FAME I and FAME II. In order to effectively reduce the carbon footprint within city it is important to increase the use of new electric vehicle and convert the old polluting vehicles to electric. Hence, a retro fitment solution for converting used LCV to electric can help in reducing emission as well as noise pollution. Later the same solution can be offered as OE fitment solution.
Technical Paper

Hydrogen as a Carbon Neutral ICE Fuel for Future India

2024-01-16
2024-26-0177
Researchers are under pressure to investigate and discover ways to improve the efficacy and reduce emissions from ICE due to the depletion of energy resources and the growing concern over global warming. Hydrogen is viewed as a promising fuel and has been investigated as a potential fuel in combustion because to several desirable qualities like carbon-less content and strong flammability limitations. When equated to other alternative fuels like LPG, CNG, LNG, etc., hydrogen has inimitable qualities because it lacks carbon, making it one of the promising alternatives fuels. In order to achieve zero CO2 emissions for traffic applications in the near future, hydrogen being an automotive fuel in ICE is a solution. The ICE powered by hydrogen is prepared for that. The actual drawbacks of using hydrogen in ICE generally are manufacturing, storage, and development of the requisite infrastructure. Hydrogen can be produced in its many forms.
Technical Paper

Regulatory Trends for Enhancement of Road Safety

2024-01-16
2024-26-0165
India is one of the largest markets for the automobile sector and considering the trends of road fatalities and injuries related to road accidents, it is pertinent to continuously review the safety regulations and introduce standards which promise enhanced safety. With this objective, various Advanced Driver Assistance Systems (ADAS) regulations are proposed to be introduced in the Indian market. ADAS such as, Anti-lock Braking Systems, Advanced Emergency Braking systems, Lane Departure Warning Systems, Auto Lane Correction Systems, Driver Drowsiness Monitoring Systems, etc., assist the driver during driving. They tend to reduce road accidents and related fatalities by their advanced and artificial intelligent fed programs. This paper will share an insight on the past, recent trends and the upcoming developments in the regulation domain with respect to safety.
Technical Paper

Simulation Based Validation of Battery Structural Integrity for Mechanical Abuse as per AIS 156

2024-01-16
2024-26-0242
Battery is one of the safety critical systems in EV. As the number of EVs increases, battery safety becomes an important task to avoid any mishap during its use, as even small accidents may slow down the adaptation of EVs. Automotive environment being one of the harshest operating environments, it is important to ensure both mechanical and electrical safety of the battery pack. Li-Ion batteries are most popular among traction batteries, due to their high energy density, long life, and fast charging capabilities. But mechanical damage, over temperature, short-circuit, etc. may lead to battery thermal runaway, causing a major accident. Mechanical abuse of battery can be one of the reasons that may lead to the damages mentioned above, eventually causing thermal runaway in batteries. That’s why all major battery safety standards have requirements for vibration and mechanical shock tests.
Technical Paper

Simulation Methodology Development for Vibration Test of Bus Body Structure Code AIS-153:2018

2024-01-16
2024-26-0249
A bus is integral part of public transportation in both rural and urban areas. It is also used for scheduled transport, tourism, and school transport. Buses are the common mode of transport all over the world. The growth in economy, the electrification of public transport, demand in shared transport, etc., is leading to a surge in the demand for buses and accelerating the overall growth of the bus industry. With the increased number of buses, the issue of safety of passengers and the crew assumes special importance. The comfort of driver and passenger in the vehicle involves the vibration performance and therefore, the structural integrity of buses is critically important. Bus safety act depicts the safety and comfort of bus operations, management of safety risks, continuous improvement in bus safety management, public confidence in the safety of bus transport, appropriate stakeholder involvement and the existence of a safety culture among bus service providers.
Technical Paper

Regulatory Framework of Construction Equipment Vehicles in India

2024-01-16
2024-26-0089
The Construction & Mining field is continuously upgrading, reshaping under the stimulus of technical enhancement. India is considered one of fastest growing country in the word. Requirement for Construction Equipment Vehicles in India is continuously growing due increased rate infrastructure development. To promote development of the Construction Equipment Vehicles (CEV’s) manufacturing sector it was also necessary to build a new governance architecture. Every vehicle plying on road has to comply with Central Motor Vehicle Regulatory requirements as per CMVR act 1989. Earlier 2021 CEV’s were required to go through performance trials like brake, steering effort, turning circle measurement, speedometer calibration as dynamic tests as per regulations.
Technical Paper

Generation of Tire Digital Twin for Virtual MBD Simulation of Vehicles for Durability, NVH and Handling Evaluation

2024-01-16
2024-26-0301
With the recent development in virtual modelling and vehicle simulation technology, many OEM’s worldwide are using digital road profiles in virtual environment for vehicle durability load prediction and virtual design evaluation. For precise simulation results, it is important to have the tire digital twin which is the realistic representation of tire in the virtual environment. The study comprises of discussion about different types of tire models such as empirical, solid model, rigid ring model and flexural ring models such as Pacejka, MF Swift, CD tire, F tire etc. and also the complexity involved in development of these tire models. Generation of virtual tire model requires highly sophisticated test rigs as well as vehicle level testing with Wheel Force transducers and other vehicle dynamics sensors. The large number of data points generated with testing are converted in standard TYDEX format to be further processed in various software tool for virtual model generation.
Technical Paper

Role of Silicone Based Thermal Encapsulants for 2&3W Battery Module Thermal Management Applications

2023-05-25
2023-28-1316
The Indian market for battery-powered electric vehicles (xEV) is growing exponentially in the coming years, fueled by tumbling lithium-ion battery prices and favorable government policies. Lithium-ion battery is leading in clean mobility ecosystem for electric vehicles. LiBs efficient and safe performance for tropical climatic conditions is one of the primary requirements for xEV to succeed in India. The performance of LiBs, however, is impacted due to ambient temperature as well as the heat generated within cell due to the load cycle electrochemical reaction. The acceptable operating temperature region for LiBs normally is between 20 °C to 45 °C and anything outside of this region will lead to degradation of performance and irreversible damages. Therefore, understanding the thermal behavior is very crucial for an efficient battery thermal management.
Technical Paper

Prediction of Tyre Dynamic Behaviour for NVH and its Experimental Validation in Anechoic Chamber

2021-09-22
2021-26-0303
In present scenario, tyre industry is more focused on providing maximum extent of NVH comfort to passengers by improvising the tyre design. Noise contribution from the tyres is classified in to three regions, viz., structure-borne (tyre vibrations), air-borne (tread pattern) and cavity noise (air cavity). In general, a Finite Element (FE) model of tyre provides an inherent advantage of analyzing tyre dynamic behavior. In this paper, an attempt was made to develop a three-dimensional FE tyre model and validate the same through experimental approach. The CAD Model of the tyre was generated through 3D image scanning process. Material property extraction of tyre was carried out by Universal Testing Machine (UTM) to generate Finite Element (FE) model. For validation of tyre FE model, Experimental Modal Analysis (EMA) and Noise Transfer Function (NTF) were conducted.
Technical Paper

Failure of Li-Ion 18650 Cylindrical Cells Subjected to Mechanical Loading and Computational Model Development

2021-09-22
2021-26-0318
To enhance the crashworthiness of electric vehicles, designing the optimized and safer battery pack is very essential. The deformed battery cell can result in catastrophic events like thermal runaway and thus it becomes crucial to study the mechanical response of battery cell. The goal of the research is to experimentally investigate the effect of mechanical deformation on Lithium-ion battery cell. The paper thoroughly studies the phenomenon of short circuiting at the time of failure. Various experiments are carried on 18650 cylindrical cells (NCA chemistry) under custom designed fume hood. The setup captures the failure modes of battery cell. The loading conditions have been designed considering the very possible physical conditions during crash event. The study has been done for radial compression, semicircular indentation, hemispherical indentation, flat circular indentation and case of three-point bending.
Technical Paper

Evaluation of Cable Harness of an Electric Vehicle Powertrain through Simulation

2021-09-22
2021-26-0350
The Electric Vehicles (EV) or Hybrid Electric Vehicle (HEV) has a bunch of electrical/electronic components and its operation give rise to complicated EMI/EMC issues. The Power Electronics Module (PEM), comprising of DC-DC convertor/invertor and Battery Management Unit (BMU), is driving the motor to propel the vehicle. “Battery Pack Module” powers these units through cables. The fast switching of these circuit elements present in the system leads to noise propagation through the cables. These noise signals give rise to various Electromagnetic (EM) related issues in the cable harness of vehicle. It is essential that these cables should not interfere with other electronic components and also does not get effected by external EM disturbances.
Technical Paper

Smart and Compact Simulation Tool for Electric Vehicle Component Sizing

2021-09-22
2021-26-0419
Electric Vehicles (EVs), with its inherent advantage of zero tailpipe emissions, are gaining importance because of aggressive push from government not only to reduce air pollution but also to reduce dependency of fossil fuel. EVs and necessary charging infrastructure along with ‘connected’ technology is redefining mobility. Considering the fast growing EV market, it becomes important for an EV Powertrain Architect to design and develop a powertrain solution having low engineering efforts and satisfying business, market and regulatory requirements at a competitive price. This paper presents a compact, flexible, convenient and smart featured simulation tool for an EV Powertrain Architect for estimating the specifications of key powertrain components such as traction battery and electric motor. The proposed tool takes into consideration the end-user as well as the regulatory requirements of range, maximum speed, acceleration and gradeability.
Technical Paper

A Unique Approach for Motion Planning for Autonomous Vehicle Using Modified Lattice Planner

2021-09-22
2021-26-0121
In order to travel in a chaotic and dynamic environment, an autonomous vehicle requires a motion plan. This motion plan ensures collision free, optimum travel without violating any traffic rules. The optimum solution for path planning problem exists in higher dimensions, however, with the help of useful heuristics the problem can be solved in real time, which is required for real time operation of an autonomous vehicle. There are different well established techniques available to plan a collision free kinematically traversable path. One of such techniques is called conformal Lattice planner. However, the legacy version of conformal lattice planner is not optimized and also is prone to fail under specific dynamic environment conditions. Moreover, the legacy version of conformal lattice planner is also not road aware. Due to this reason it is a semi optimized way to solve the motion planning problem.
Journal Article

Machine Learning Based Model Development with Annotated Database for Indian Specific Object Detection

2021-09-22
2021-26-0127
Now-a-days, Advanced driver-assistance systems (ADAS) is equipping cars and drivers with advance information and technology to make them become aware of the environment and handle potential situations in better way semi-autonomously. High-quality training and test data is essential in the development and validation of ADAS systems which lay the foundation for autonomous driving technology. ADAS uses the technology like radar, vision and combinations of various sensors including LIDAR to automatize dynamic driving tasks like steering, braking, and acceleration of vehicle for controlled and safe driving. And to integrate these advance technologies, the ADAS needs labeled data to train the algorithm to detect the various objects and moments of driver. Image annotation is one the well-known service to create such training data for computer vision. There are number of open source annotated datasets available viz. COCO, KITTI etc.
Technical Paper

Thermal Characterization of Li-Ion Phosphate (LiFePO4) HEV Battery Using HPPC Test

2021-09-15
2021-28-0121
Recently, Hybrid electric vehicles have become significant. Electric vehicle is still in its infancy while grappling with multiple solutions to its problem of range anxiety and heavy weight. It makes HEV the viable and intermediate solution which can facilitate the transition. The battery behaviour is grossly defined by its dependence on variation due to temperature change. Hence, this present work focuses on understanding thermal characterization & pure behaviour of the Li-Ion Phosphate (LiFePO4) P1-HEV battery using the HPPC test. This becomes imperative because of the varying driver demands and ambient temperatures over the use during the day. Thus, the current drawn from battery varies (different C rate) leading to heat generation (I2R heating) within the pack/individual cell. Cyclically, impacting the cell performance and battery cycle life.
Technical Paper

Impact of Wheel-Housing on Aerodynamic Drag and Effect on Energy Consumption on an Electric Bus Body

2019-11-21
2019-28-2394
Role of wheel and underbody aerodynamics of vehicle in the formation of drag forces is detrimental to the fuel (energy) consumption during the course of operation at high velocities. This paper deals with the CFD simulation of the flow around the wheels of a bus with different wheel housing arrangements. Based on benchmarking, a model of a bus is selected and analysis is performed. The aerodynamic drag coefficient is obtained and turbulence around wheels is observed using ANSYS Fluent CFD simulation for different combinations of wheel-housing- at the front wheels, at the rear wheels and both in the front and rear wheels. The drag force is recorded and corresponding influence on energy consumption of a bus is evaluated mathematically. A comparison is drawn between energy consumption of bus body without wheel housing and bus body with wheel housing. The result shows a significant reduction in drag coefficient and fuel consumption.
Technical Paper

Design and Development of a Retrofit Solution for Converting a Conventional LCV into Parallel Hybrid Electric Vehicle

2019-01-09
2019-26-0117
In today’s scenario, the emission norms are getting stringent day by day due to an increased level of pollution. The world is shifting towards low carbon footprint which made it necessary to adopt efficient technologies with fewer emissions. The hybridization of vehicles has resulted in improved efficiency with lower emissions which can fulfil the near future emission norms. Retrofitting of hybrid components into a conventional IC engine vehicle is so far the best way to achieve better performance both economically and technologically. This research is primarily focused on the design and development of a novel retrofit solution of P3x architecture for the light commercial vehicle. This retrofit solution is different from other hybrid solutions in terms of powertrain. It contains an innovative add-on powertrain along with the existing powertrain. This additional powertrain consists of a pair of helical gears followed by a chain and sprocket as a coupler for traction motor.
Technical Paper

Performance Evaluation of Chassis System for Converted Hybrid Electric Vehicle

2019-01-09
2019-26-0260
The technology development in automobiles is progressing towards providing smarter vehicles with increased efficiency and reduced emission. To cater this need, Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV) are slowly thriving in Indian roads. Conversion of existing IC engine powered vehicle to HEV reduces complication in new vehicle development and also results in vehicles with increased efficiency and reduced emission. In order to convert the Conventional Vehicle to Hybrid Electric Vehicle, drive from electric motor was coupled with existing driveline by modifying mechanical systems suitably. Hybrid vehicle includes systems such as electric motors, inverters, high-voltage batteries and electronic control units, which are mounted in chassis members. Being a major load carrying member, any modifications in chassis system may affect the performance of vehicle, therefore it is necessary to evaluate the modified design of chassis members.
Technical Paper

Effect of Ambient Temperature and Inflation Pressure on Tire Temperature

2019-01-09
2019-26-0360
Tire failure is identified as a major cause of accidents on highways around the world in the recent past. A tire burst leads to loss of control of the vehicle which ends up in a catastrophe. There are various factors which are accounted for a tire burst. Heat buildup, aging of tire and cracks on tires are the major ones which are identified. A superior ability of the tire to dissipate the heat generated during operation is a major factor which prevents a tire failure. Other factors such as ambient temperature, inflation pressure etc. contributes to heat buildup which may ultimately result in tire failure. A combination of these factors might manifest as a tire failure at high speeds, the latter being an immediate cause of heat buildup. A dormant crack in the tire might develop if the temperature and pressure conditions are favorable, thus giving away at the weakest point. With regard to the temperature conditions, road conditions, inflation pressure checks etc.
Technical Paper

A Novel Method for Active Vibration Control of Steering Wheel

2019-01-09
2019-26-0180
Active control mainly comprises of three parts; sensor-detects the input disturbance, actuator -provide counter measures and control logic -processing of input disturbances and converting it into logical output. Lot of methods for active vibration control are available but this paper deals with active control of steering wheel vibrations of an LCV. A steering wheel is, one such component that directly transfers vibration to the driver. Active technique described here is implemented using accelerometer sensor, IMA (Inertial Mass Actuator) and feed forward Fx-LMS (Filtered reference Least Mean Square) control algorithm. IMA is a single-degree-of-freedom oscillator. To enable a control, IMA needs to be coupled to the structure at a single point, acting as an add-on to the passive system. Fx-LMS is a type of adaptive algorithm which is computationally simple and it also includes compensation for secondary path effects by using an estimate of the secondary path.
X