Refine Your Search

Topic

Author

Search Results

Technical Paper

Advanced squeak and rattle noise prediction for vehicle interior development – numerical simulation and experimental validation

2024-06-12
2024-01-2925
Squeak and rattle (SAR) noise audible inside a passenger car causes the product quality perceived by the customer to deteriorate. The consequences are high warranty costs and a loss in brand reputation for the vehicle manufacturer in the long run. Therefore, SAR noise must be prevented. This research shows the application and experimental validation of a novel method to predict SAR noise on an actual vehicle interior component. The novel method is based on non-linear theories in the frequency domain. It uses the harmonic balance method in combination with the alternating frequency/time domain method to solve the governing dynamic equations. The simulation approach is part of a process for SAR noise prediction in vehicle interior development presented herein. In the first step, a state-of-the-art linear frequency-domain simulation estimates an empirical risk index for SAR noise emission. Critical spots prone to SAR noise generation are located and ranked.
Technical Paper

Leveraging Historical Thermal Wind Tunnel Data for ML-Based Predictions of Component Temperatures for a New Vehicle Project

2023-06-26
2023-01-1216
The thermal operational safety (TOS) of a vehicle ensures that no component exceeds its critical temperature during vehicle operation. To enhance the current TOS validation process, a data-driven approach is proposed to predict maximum component temperatures of a new vehicle project by leveraging the historical thermal wind tunnel data from previous vehicle projects. The approach intends to support engineers with temperature predictions in the early phase and reduce the number of wind tunnel tests in the late phase of the TOS validation process. In the early phase, all measurements of the new vehicle project are predicted. In the late phase, a percentage of measurements with the test vehicle used for the model training and the remaining tests are predicted with the trained ML model. In a first step, data from all wind tunnel tests is extracted into a joint dataset together with metadata about the vehicle and the executed load case.
Technical Paper

Comparison of Methods Between an Acceleration-Based In-Situ and a New Hybrid In-Situ Blocked Force Determination

2022-06-15
2022-01-0979
The NVH-development cycle of vehicle components often requires a source characterization separated from the vehicle itself, which leads to the implementation of test bench setups. In the context of frequency based substructuring and transfer path analysis, a component can be characterized using Blocked Forces. The following paper provides a comparison of methods between an acceleration-based in-situ and a new hybrid in-situ Blocked Force determination, using measurements of an artificially excited electric power steering (EPS). Under real-life conditions on a test rig, the acceleration-based in-situ approach often shows limitations in the lower frequency range, due to relatively bad signal-to-noise ratio at the indicator sensors, while delivering accurate results in the higher spectrum. Due to considerable loads on components in operation, the stiffness of the test-rig cannot be decreased arbitrarily.
Technical Paper

Student Concept Vehicle: Development and Usability of an Innovative Holographic User Interface Concept and a Novel Parking Assistance System Concept

2019-04-02
2019-01-0396
The Deep Orange program is a concept vehicle development program focused on providing hands-on experience in design, engineering, prototyping and production planning as part of students’ two-year MS graduate education. Throughout this project, the team was challenged to create innovative concepts during the ideation phase as part of building the running vehicle. This paper describes the usability studies performed on two of the vehicle concepts that require driver interaction. One concept is a human machine interface (HMI) that uses a holographic companion that can act as a concierge for all functions of the vehicle. After creating a prototype using existing technologies and developing a user interface controlled by hand gestures, a usability study was completed with older adults. The results suggest the input method was not intuitive. Participants demonstrated better performance with tasks using discrete hand motions in comparison to those that required continuous motions.
Technical Paper

A Fluid-Structure Interaction Scheme for Prediction of Flow-Induced Low Frequency Booming Noise

2018-06-13
2018-01-1521
The analysis of the acoustic behavior of flow fields has gained importance in recent years, especially in the automotive industry. The comfort of the driver is heavily influenced by the noise levels and characteristics, especially during long distance drives. Simulation tools can help to analyze the acoustic properties of a car at an early stage of the development process. This work focuses on the low-frequency sound effects, which can be a significant noise component under certain operating conditions. As a first step in the fluid-structure interaction workflow, the flow around a series-production vehicle is simulated, including passenger cabin and underhood flow. The complexity of this model poses extensive demands on the simulation software, concerning meshing, turbulence modeling and level of parallelism. We conducted a transient simulation of the compressible fluid flow, using a hybrid RANS/LES approach.
Technical Paper

Technology from Highly Automated Driving to Improve Active Pedestrian Protection Systems

2017-03-28
2017-01-1409
Highly Automated Driving (HAD) opens up new middle-term perspectives in mobility and is currently one of the main goals in the development of future vehicles. The focus is the implementation of automated driving functions for structured environments, such as on the motorway. To achieve this goal, vehicles are equipped with additional technology. This technology should not only be used for a limited number of use cases. It should also be used to improve Active Safety Systems during normal non-automated driving. In the first approach we investigate the usage of machine learning for an autonomous emergency braking system (AEB) for the active pedestrian protection safety. The idea is to use knowledge of accidents directly for the function design. Future vehicles could be able to record detailed information about an accident. If enough data from critical situations recorded by vehicles is available, it is conceivable to use it to learn the function design.
Journal Article

Further Investigations on the Flow Around a Rotating, Isolated Wheel with Detailed Tread Pattern

2015-04-14
2015-01-1554
Efforts in aerodynamic optimization of road vehicles have been steadily increasing in recent years, mainly focusing on the reduction of aerodynamic drag. Of a car's total drag, wheels and wheel houses account for approx. 25 percent. Consequently, the flow around automotive wheels has lately been investigated intensively. Previously, the authors studied a treaded, deformable, isolated full-scale tire rotating in contact with the ground in the wind tunnel and using the Lattice-Boltzmann solver Exa PowerFLOW. It was shown that applying a common numerical setup, with velocity boundary condition prescribed on the tread, significant errors were introduced in the simulation. The contact patch separation was exaggerated and the flow field from wind tunnel measurements could not be reproduced. This investigation carries on the work by examining sensitivities and new approaches in the setup.
Technical Paper

A Numerical Investigation of Dampening Dynamic Profiles for the Application in Transient Vehicle Thermal Management Simulations

2014-04-01
2014-01-0642
As computational methodologies become more integrated into industrial vehicle pre-development processes the potential for high transient vehicle thermal simulations is evident. This can also been seen in conjunction with the strong rise in computing power, which ultimately has supported many automotive manufactures in attempting non-steady simulation conditions. The following investigation aims at exploring an efficient means of utilizing the new rise in computing resources by resolving high time-dependent boundary conditions through a series of averaging methodologies. Through understanding the sensitivities associated with dynamic component temperature changes, optimised boundary conditions can be implemented to dampen irrelevant input frequencies whilst maintaining thermally critical velocity gradients.
Technical Paper

The Development of Exhaust Surface Temperature Models for 3D CFD Vehicle Thermal Management Simulations Part 2 - Exhaust Acoustic Silencer Configurations

2014-04-01
2014-01-0646
At the rear of the vehicle an end acoustic silencer is attached to the exhaust system. This is primarily to reduce noise emissions for the benefit of passengers and bystanders. Due to the location of the end acoustic silencer conventional thermal protection methods (heat shields) through experimental means can not only be difficult to incorporate but also can be an inefficient and costly experience. Hence simulation methods may improve the development process by introducing methods of optimization in early phase vehicle design. A previous publication (Part 1) described a methodology of improving the surface temperatures prediction of general exhaust configurations. It was found in this initial study that simulation results for silencer configurations exhibited significant discrepancies in comparison to experimental data.
Journal Article

Psychoacoustic Requirements for Warning Sounds of Quiet Cars

2012-06-13
2012-01-1522
According to upcoming legislative regulations in certain countries, electric and hybrid-electric vehicles (EVs and HEVs) will have to be equipped with devices to compensate for the lack of engine noise needed to warn pedestrians against the vehicles. This leads to the question of appropriate sound design which has to meet specific psychoacoustic requirements. The present paper focuses on auditory features of warning sounds to enhance pedestrians' safety with a major focus on the detectability of the exterior noise of the vehicle in an ambient noise. For the evaluation of detectability, the psychoacoustic model developed by Kerber and Fastl will be introduced allowing for the prediction of masked thresholds of the approaching vehicle. The instrumental assessment yields estimates of the distance of an approaching vehicle at the point it becomes audible to the pedestrians.
Technical Paper

Aerodynamic Performance Assessment of BMW Validation Models using Computational Fluid Dynamics

2012-04-16
2012-01-0297
Aerodynamic performance assessment of automotive shapes is typically performed in wind tunnels. However, with the rapid progress in computer hardware technology and the maturity and accuracy of Computational Fluid Dynamics (CFD) software packages, evaluation of the production-level automotive shapes using a digital process has become a reality. As the time to market shrinks, automakers are adopting a digital design process for vehicle development. This has elevated the accuracy requirements on the flow simulation software, so that it can be used effectively in the production environment. Evaluation of aerodynamic performance covers prediction of the aerodynamic coefficients such as drag, lift, side force and also lift balance between the front and rear axle. Drag prediction accuracy is important for meeting fuel efficiency targets, prediction of front and rear lifts as well as side force and yawing moment are crucial for high speed handling.
Technical Paper

Cycle Life Investigations on Different Li-Ion Cell Chemistries for PHEV Applications Based on Real Life Conditions

2012-04-16
2012-01-0656
Plug-In Hybrid Electric Vehicles (PHEV) are becoming increasingly important as an intermediate step on the roadmap to Battery Electric Vehicles (BEV). Li-Ion is the most important battery technology for future hybrid and electrical vehicles. Cycle life of batteries for automotive applications is a major concern of design and development on vehicles with electrified powertrain. Cell manufacturers present various cell chemistries based on Li-Ion technology. For choosing cells with the best cycle life performance appropriate test methods and criteria must be obtained. Cells must be stressed with accelerated aging methods, which correlate with real life conditions. There is always a conflict between high accelerating factors for fast results on the one hand and best accordance with reality on the other hand. Investigations are done on three different Li-Ion cell types which are applicable in the use of PHEVs.
Technical Paper

Experimental Investigation of Unsteady Vehicle Aerodynamics under Time-Dependent Flow Conditions - Part 1

2011-04-12
2011-01-0177
Unsteady aerodynamic flow phenomena are investigated in the wind tunnel by oscillating a realistic 50% scale model around its vertical axis. Thus the model is exposed to time-dependent flow conditions at realistic Reynolds and Strouhal numbers. Using this setup unsteady aerodynamic loads are observed to differ significantly from quasi-steady loads. In particular, the unsteady yaw moment exceeds the quasi-steady approximation by 80%. On the other hand, side force and roll moment are over predicted by quasi-steady approximation but exhibit a significant time delay. Using hotwire anemometry, a delayed reaction of the wake flow of Δt/T = 0.15 is observed, which is thought to be the principal cause for the differences between unsteady and quasi-steady aerodynamic loads. A schematic mechanism explaining these differences due to the delayed reaction of the wake flow is proposed.
Technical Paper

Experimental Investigation of Unsteady Vehicle Aerodynamics under Time-Dependent Flow Conditions - Part2

2011-04-12
2011-01-0164
Unsteady aerodynamic flow phenomena are investigated in a wind tunnel by oscillating a realistic 50% scale model around the vertical axis. Thus the model is exposed to time-dependent flow conditions at realistic Reynolds and Strouhal numbers. Using this setup unsteady aerodynamic loads are observed to differ significantly from quasi steady loads. In particular, the unsteady yaw moment exceeds the quasi steady approximation significantly. On the other hand, side force and roll moment are over predicted by quasi steady approximation but exhibit a significant time delay. Part 2 of this study proves that a delayed and enhanced response of the surface pressures at the rear side of the vehicle is responsible for the differences between unsteady and quasi steady loads. The pressure changes at the vehicle front, however, are shown to have similar amplitudes and almost no phase shift compared to quasi steady flow conditions.
Technical Paper

Test Center for Aging Analysis and Characterization of Lithium-Ion Batteries for Automotive Applications

2011-04-12
2011-01-1374
A test center for aging analysis and characterization of Lithium-Ion batteries for automotive applications is optimized by means of a dedicated cell tester. The new power tester offers high current magnitude with fast rise time in order to generate arbitrary charge and discharge waveforms, which are identical to real power net signals in vehicles. Upcoming hybrid and electrical cars show fast current transients due to the implemented power electronics like inverter or DC/DC converter. The various test procedures consider single and coupled effects from current profile, state of charge and temperature. They are simultaneously applied on several cells in order to derive statistical significance. Comprehensive safely functions on both the hardware and the software level ensure proper operation of the complex system.
Technical Paper

Injury Risk to Specific Body Regions of Pedestrians in Frontal Vehicle Crashes Modeled by Empirical, In-Depth Accident Data

2010-11-03
2010-22-0006
Evaluation of safety benefits is an essential task during design and development of pedestrian protection systems. Comparative evaluation of different safety concepts is facilitated by a common metric taking into account the expected human benefits. Translation of physical characteristics of a collision, such as impact speed, into human benefits requires reliable and preferably evidence-based injury models. To this end, the dependence of injury severity of body regions on explanatory factors is quantified here using the US Pedestrian Crash Data Study (PCDS) for pedestrians in frontal vehicle collisions. The explanatory and causal factors include vehicle component characteristics, physiological and biomechanical variables, and crash parameters. Severe to serious injuries most often involve the head, thorax and lower extremities.
Technical Paper

Measuring Near Zero Automotive Exhaust Emissions - Zero Is a Very Small Precise Number

2010-04-12
2010-01-1301
In the environmentally conscious world we live in, auto manufacturers are under extreme pressure to reduce tailpipe emissions from cars and trucks. The manufacturers have responded by creating clean-burning engines and exhaust treatments that mainly produce CO2 and water vapor along with trace emissions of pollutants such as CO, THC, NOx, and CH4. The trace emissions are regulated by law, and testing must be performed to show that they are below a certain level for the vehicle to be classified as road legal. Modern engine and pollution control technology has moved so quickly toward zero pollutant emissions that the testing technology is no longer able to accurately measure the trace levels of pollutants. Negative emission values are often measured for some pollutants, as shown by results from eight laboratories independently testing the same SULEV automobile.
Technical Paper

A CFD/SEA Approach for Prediction of Vehicle Interior Noise due to Wind Noise

2009-05-19
2009-01-2203
For most car manufacturers, aerodynamic noise is becoming the dominant high frequency noise source (> 500 Hz) at highway speeds. Design optimization and early detection of issues related to aeroacoustics remain mainly an experimental art implying high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the development of a reliable numerical prediction capability. The goal of this paper is to present a computational approach developed to predict the greenhouse windnoise contribution to the interior noise heard by the vehicle passengers. This method is based on coupling an unsteady Computational Fluid Dynamics (CFD) solver for the windnoise excitation to a Statistical Energy Analysis (SEA) solver for the structural acoustic behavior.
Journal Article

Virtual Assessment of Occupied Seat Vibration Transmissibility

2008-06-17
2008-01-1861
This paper presents an integrated simulation process which has been performed in order to assess the riding comfort performance of a vehicle seat system virtually. Present methods of seat comfort design rely on the extensive testing of numerous hardware prototypes. In order to overcome the limitations of this expensive and time-consuming process, and to fasten innovation, simulation-based design has to be used to predict the seat comfort performance very early in the seat design process, leading to a drastic reduction in the number of physical prototypes. The accurate prediction of the seat transfer function by numerical simulation requires a complete simulation chain, which takes into account the successive stages determining the final seat behaviour when submitted to vibrations. First the manufacturing stresses inside the cushion, resulting from the trimming process, are computed.
Technical Paper

Enhancing Navigation Systems with Quality Controlled Traffic Data

2008-04-14
2008-01-0200
As the popularity of vehicle navigation systems rises, incorporating Real Time Traffic Information (RTTI) has been shown to enhance the systems' value by helping drivers avoid traffic delays. As an innovative premium automaker, BMW has developed a testing process to acquire and analyze RTTI data in order to ensure delivery of a high quality service and to enhance the customer experience compared to audible broadcast services. With a methodology to obtain valid and repeatable RTTI data quality measurements, BMW and its service partner, Clear Channel's Total Traffic Network (TTN), can improve its offered service over time, implement corrective measures when appropriate, and confidently ensure the service meets its premium objectives. BMW has partnered with TTN and SoftSolutions GmbH to implement a traffic data quality process and software tools.
X