Refine Your Search

Topic

Author

Search Results

Technical Paper

Wheel Drive Unit Lift Corrections in Automotive Wind Tunnels

2024-04-09
2024-01-2544
Correct simulations of rotating wheels are essential for accurate aerodynamic investigations of passenger vehicles. Therefore, modern automotive wind tunnels are equipped with five-belt moving ground systems with wheel drive units (WDUs) connected to the underfloor balance. The pressure distribution on the exposed areas of the WDU belts results in undesired lift forces being measured which must be considered to obtain accurate lift values for the vehicle. This work investigates the parasitic WDU lift for various configurations of a crossover SUV using numerical simulations that have been correlated to wind tunnel data. Several parameters were considered in the investigation, such as WDU size, WDU placement, tyre variants and vehicle configurations. The results show that the parasitic lift is more sensitive to the width than the length of the WDU. However, the belt length is also important to consider, especially if the wheel cannot be placed centred.
Technical Paper

Target Driven Bushing Design for Wheel Suspension Concept Development

2023-04-11
2023-01-0638
Bushing elasticity is one of the most important compliance factors that significantly influence driving behavior. The deformations of the bushings change the wheel orientations under external forces. Another important factor of bushing compliance is to provide a comfortable driving experience by isolating the vibrations from road irregularities. However, the driving comfort and driving dynamics are often in conflict and need to be balanced in terms of bushing compliance design. Specifically, lateral force steer and brake force steer are closely related to safety and stability and comprises must be minimized. The sensitivity analysis helps engineers to understand the critical bushing for certain compliance attributes, but optimal balancing is complicated to understand. The combination of individual bushing stiffness must be carefully set to achieve an acceptable level of all the attributes.
Technical Paper

Drivers’ Perceived Sensitivity to Crosswinds and to Low-Frequency Aerodynamic Lift Fluctuations

2023-04-11
2023-01-0659
The automotive industry continues to increase the utilization of computer-aided engineering. This put demands on finding reliable objective measures that correlate to subjective driver assessments on driving stability performance. However, the drivers’ subjective perception of driving stability can be difficult to quantify objectively, especially on test tracks where the wind conditions cannot be controlled. The advancement in driving simulator technology may enable evaluation of driving stability with high repeatability. The purpose of this study is to correlate the subjective assessment of driving stability to reliable objective measures and to evaluate the usefulness of a driving simulator for the subjective assessment. Two different driver clinic studies were performed in a state-of-the-art driving simulator. The first study included 38 drivers (professional, experienced and common drivers) and focused on crosswind gust sensitivity.
Technical Paper

Predictive Model of Driver’s Perception of Vehicle Stability under Aerodynamic Excitation

2023-04-11
2023-01-0903
In vehicle development, a subjective evaluation of the vehicle’s behavior at high speeds is usually conducted by experienced drivers with the objective of assessing driving stability. To avoid late design changes, it is desirable to predict and resolve perceived instabilities early in the development phase. In this study, a mathematical model is developed from measurements during on-road tests to predict the driver’s ability to identify vehicle instabilities under excitations such as aerodynamic excitations. A vehicle is fitted with add-ons to create aerodynamic excitations and is driven by multiple drivers on a high-speed track. Drivers’ evaluation, responses, cabin motion, and crosswind conditions are recorded. The influence of yaw and roll rates, lateral acceleration, and steering angle at various frequency ranges when predicting the drivers’ evaluation of induced excitation is demonstrated. The drivers’ evaluation of vehicle behavior is influenced by driver-vehicle interactions.
Technical Paper

Influence of Wheel Drive Unit Belt Width on the Aerodynamics of Passenger Vehicles

2023-04-11
2023-01-0657
Wind tunnels are an essential tool in vehicle development. To simulate the relative velocity between the vehicle and the ground, wind tunnels are typically equipped with moving ground and boundary layer control systems. For passenger vehicles, wind tunnels with five-belt systems are commonly used as a trade-off between accurate replication of the road conditions and uncertainty of the force measurements. To allow different tyre sizes, the wheel drive units (WDUs) can often be fitted with belts of various widths. Using wider belts, the moving ground simulation area increases at the negative cost of larger parasitic lift forces, caused by the connection between the WDUs and the balance. In this work, a crossover SUV was tested with 280 and 360mm wide belts, capturing forces, surface pressures and flow fields. For further insights, numerical simulations were also used.
Technical Paper

Evaluation of Electrically Heated Catalyst Control Strategies against a Variation of Cold Engine Start Driver Behaviour

2022-03-29
2022-01-0544
An electrically heated catalyst (EHC) in the three-way catalyst (TWC) aftertreatment system of a gasoline internal combustion engine (ICE) provides cold engine start exhaust pollutant emission reduction potential. The EHC can be started before switching on the ICE, thereby offering the possibility to pre-heat (PRH) the TWC, in the absence of exhaust flow. The EHC can also provide post engine start heat (PSH) when the heat is accompanied by exhaust mass flow over the TWC. A mixed heating strategy (MXH) comprises both PRH and PSH. All three strategies are evaluated under a range of engine start variations using an ICE-exhaust aftertreatment (EATS) simulation framework. It is driven by an engine speed-torque requested trace, with an engine-out emissions model focused on cold-start, engine heating and catalyst heating engine measures and a physics- based EATS with EHC model.
Technical Paper

Computational Investigation of the Effects of Injection Strategy and Rail Pressure on Isobaric Combustion in an Optical Compression Ignition Engine

2021-09-05
2021-24-0023
The high-pressure isobaric combustion has been proposed as the most suitable combustion mode for the double compre4ssion expansion engine (DCEE) concept. Previous experimental and simulation studies have demonstrated an improved efficiency compared to the conventional diesel combustion (CDC) engine. In the current study, isobaric combustion was achieved using a single injector with multiple injections. Since this concept involves complex phenomena such as spray to spray interactions, the computational models were extensively validated against the optical engine experiment data, to ensure high-fidelity simulations. The considered optical diagnostic techniques are Mie-scattering, fuel tracer planar laser-induced fluorescence (PLIF), and natural flame luminosity imaging. Overall, a good agreement between the numerical and experimental results was obtained.
Technical Paper

Investigation of Seat Suspensions with Embedded Negative Stiffness Elements for Isolating Bus Users’ Whole-Body Vibrations

2021-02-17
2021-01-5019
Bus drivers are a group at risk of often suffering from musculoskeletal problems, such as low-back pain, while bus passengers on the last-row seats experience accelerations of high values. In this paper, the contribution of K-seat in decreasing the above concern is investigated with a detailed simulation study. The K-seat model, a seat with a suspension that functions according to the KDamper concept, which combines a negative stiffness element with a passive one, is benchmarked against the conventional passive seat (PS) in terms of comfort when applied to different bus users’ seats. More specifically, it is tested in the driver’s and two different passengers’ seats, one from the rear overhang and one from the middle part. For the benchmark shake, both are optimized by applying excitations that correspond to real intercity bus floor responses when it drives over a real road profile.
Technical Paper

Quantitative High Speed Stability Assessment of a Sports Utility Vehicle and Classification of Wind Gust Profiles

2020-04-14
2020-01-0677
The automotive trends of vehicles with lower aerodynamic drag and more powerful drivetrains have caused increasing concern regarding stability issues at high speeds, since more streamlined bodies show greater sensitivity to crosswinds. This is especially pronounced for high vehicles, such as sports utility vehicles. Besides, the competitiveness in the automotive industry requires faster development times and, thus, a need to evaluate the high speed stability performance in an early design phase, preferable using simulation tools. The usefulness of these simulation tools partly relies on realistic boundary conditions for the wind and quantitative measures for assessing stability without the subjective evaluation of experienced drivers. This study employs an on-road experimental measurements setup to define relevant wind conditions and to find an objective methodology to evaluate high speed stability.
Technical Paper

Human Response to Vibrations and Its Contribution to the Overall Ride Comfort in Automotive Vehicles - A Literature Review

2020-04-14
2020-01-1085
The various factors that affect ride comfort, including noise, vibrations and harshness (NVH) have been in focus in many research studies due to an increasing demand in ride comfort in the automotive industry. Vibrations have been highlighted as an important contribution to assess and predict overall ride comfort. The purpose of this paper is to present an approach to explain ride comfort with respect to vibration for the seated occupant based on a systematic literature review of previous fundamental research and to relate these results to the application in the contemporary automotive industry. The results from the literature study show that numerous research studies have determined how vibration frequency, magnitude, direction, duration affect human response to vibration. Also, the studies have highlighted how body posture, age, gender and anthropometry affect the human perception of comfort.
Technical Paper

Toward an Effective Virtual Powertrain Calibration System

2018-04-03
2018-01-0007
Due to stricter emission regulations and more environmental awareness, the powertrain systems are moving toward higher fuel efficiency and lower emissions. In response to these pressing needs, new technologies have been designed and implemented by manufacturers. As a result of increasing complexity of the powertrain systems, their control and optimization become more and more challenging. Virtual powertrain calibration, also known as model-based calibration, has been introduced to transfer a part of test bench testing into a virtual environment, and hence considerably reduce time and cost of product development process while increasing the product quality. Nevertheless, virtual calibration has not yet reached its full potential in industrial applications. Volvo Penta has recently developed a virtual test cell named VIRTEC, which is used in an ongoing pilot project to meet the Stage V emission standards.
Technical Paper

A 1D Method for Transient Simulations of Cooling Systems with Non-Uniform Temperature and Flow Boundaries Extracted from a 3D CFD Solution

2015-04-14
2015-01-0337
The current work investigates a method in 1D modeling of cooling systems including discretized cooling package with non-uniform boundary conditions. In a stacked cooling package the heat transfer through each heat exchanger depends on the mass flows and temperature fields. These are a result of complex three-dimensional phenomena, which take place in the under-hood and are highly non-uniform. A typical approach in 1D simulations is to assume these to be uniform, which reduces the authenticity of the simulation and calls for additional calibrations, normally done with input from test measurements. The presented work employs 3D CFD simulations of complete vehicle in STAR-CCM+ to perform a comprehensive study of mass-flow and thermal distribution over the inlet of the cooling package of a Volvo FM commercial vehicle in several steady-state operating points.
Technical Paper

Holistic Approach for Improved Safety Including a Proposal of New Virtual Test Conditions of Small Electric Vehicles

2015-04-14
2015-01-0571
In the next 20 years the share of small electric vehicles (SEVs) will increase especially in urban areas. SEVs show distinctive design differences compared to traditional vehicles. Thus the consequences of impacts of SEVs with vulnerable road users (VRUs) and other vehicles will be different from traditional collisions. No assessment concerning vehicle safety is defined for vehicles within European L7e category currently. Focus of the elaborated methodology is to define appropriate test scenarios for this vehicle category to be used within a virtual tool chain. A virtual tool chain has to be defined for the realization of a guideline of virtual certification. The derivation and development of new test conditions for SEVs are described and are the main focus of this work. As key methodology a prospective methodical analysis under consideration of future aspects like pre-crash safety systems is applied.
Technical Paper

Correlation Between Euro NCAP Pedestrian Test Results and Injury Severity in Injury Crashes with Pedestrians and Bicyclists in Sweden

2014-11-10
2014-22-0009
Pedestrians and bicyclists account for a significant share of deaths and serious injuries in the road transport system. The protection of pedestrians in car-to-pedestrian crashes has therefore been addressed by friendlier car fronts and since 1997, the European New Car Assessment Program (Euro NCAP) has assessed the level of protection for most car models available in Europe. In the current study, Euro NCAP pedestrian scoring was compared with real-life injury outcomes in car-to-pedestrian and car-to-bicyclist crashes occurring in Sweden. Approximately 1200 injured pedestrians and 2000 injured bicyclists were included in the study. Groups of cars with low, medium and high pedestrian scores were compared with respect to pedestrian injury severity on the Maximum Abbreviated Injury Scale (MAIS)-level and risk of permanent medical impairment (RPMI). Significant injury reductions to both pedestrians and bicyclists were found between low and high performing cars.
Technical Paper

Driver Kinematic and Muscle Responses in Braking Events with Standard and Reversible Pre-tensioned Restraints: Validation Data for Human Models

2013-11-11
2013-22-0001
The objectives of this study are to generate validation data for human models intended for simulation of occupant kinematics in a pre-crash phase, and to evaluate the effect of an integrated safety system on driver kinematics and muscle responses. Eleven male and nine female volunteers, driving a passenger car on ordinary roads, performed maximum voluntary braking; they were also subjected to autonomous braking events with both standard and reversible pre-tensioned restraints. Kinematic data was acquired through film analysis, and surface electromyography (EMG) was recorded bilaterally for muscles in the neck, the upper extremities, and lumbar region. Maximum voluntary contractions (MVCs) were carried out in a driving posture for normalization of the EMG. Seat belt positions, interaction forces, and seat indentions were measured. During normal driving, all muscle activity was below 5% of MVC for females and 9% for males.
Technical Paper

Effect of Semi-Active Front Axle Suspension Design on Vehicle Comfort and Road Holding for a Heavy Truck

2012-09-24
2012-01-1931
Semi-active suspension systems for ground vehicles have been the focus of research for several years as they offer improvements in vehicle comfort and handling. This kind of suspension has attracted more interest compared to active suspension systems especially due to lower cost and energy consumption. In this paper the capabilities of a semi-active front axle suspension are investigated for a commercial vehicle. A half-truck model of a 4x2 tractor and semitrailer combination is developed in Matlab/Simulink for this purpose. Also, a 2 DOF roll plane model is considered to capture the roll motion of the vehicle body mass. Employing the above-mentioned models, results from on-off and continuous variable semi-active damping systems are compared to the ones from the passive suspension system according to ride comfort and handling safety characteristics.
Technical Paper

Early Risk Identification and Cost-Benefit Analyses through Ergonomics Simulation

2009-06-09
2009-01-2287
For cost-beneficial reasons simulations with computer manikins have been increasingly used in the automotive industry for prediction of ergonomics problems before the product and work place exist in physical form. The main purpose of ergonomics simulations is to apply biomechanical models and data to assess the acceptability of the physical work load, e.g. working postures, visibility, clearance etc., which could result in requirements to change the design of the product. The aim is to improve ergonomics conditions in manual assembly and to promote a better product quality through improved assemblability (ease of assembly). Many studies have shown a clear correlation between assembly ergonomics and product quality and that poor assembly ergonomics result in impaired product quality and in decreased productivity. Nevertheless, there are remaining difficulties in achieving acceptance for changes of product and production solutions because of poor assembly ergonomics.
Technical Paper

A Study on Head Injury Risk in Car-to-Pedestrian Collisions Using FE-Model

2009-06-09
2009-01-2263
Head injury is quite frequently occurred in car-to-pedestrian collisions, which often places an enormous burden to victims and society. To address head protection and understand the head injury mechanisms, in-depth accident investigation and accident reconstructions were conducted. A total of 6 passenger-cars to adult-pedestrian accidents were sampled from the in-depth accident investigation in Changsha China. Accidents were firstly reconstructed by using Multi-bodies (MBS) pedestrian and car models. The head impact conditions such as head impact velocity; position and orientation were calculated from MBS reconstructions, which were then employed to set the initial conditions in the simulation of a head model striking a windshield using Finite Element (FE) head and windshield models. The intracranial pressure and stress distribution of the FE head model were calculated and correlated with the injury outcomes.
Technical Paper

Modification of a Diesel Oil Surrogate Model for 3D CFD Simulation of Conventional and HCCI Combustion

2008-10-06
2008-01-2410
This paper describes an analysis of the Diesel Oil Surrogate (DOS) model used at Chalmers University (Sweden), including 70 species participating in 310 reactions, and subsequent improvements prompted by the model's systematic tendency to under-predict the combustion intensity in simulations of kinetically-driven combustion modes, e.g. Homogeneous Charged Compression Ignition (HCCI). Key bases of the model are the properties of a model Diesel fuel with the molecular formula C14H28. In the vapor phase, a global reaction decomposes the starting fuel, C14H28, into its constituent components; n-heptane (C7H16) and toluene (C7H8). This global reaction was modified to yield a higher n-heptane:toluene ratio, due to the importance of preserving an n-heptane-like cetane number.
Technical Paper

Application of Transient Temperature vs. Equivalence Ratio Emission Maps to Engine Simulations

2007-04-16
2007-01-1086
In order to acquire knowledge about temperature vs. equivalence ratio, T-ϕ, conditions in which emissions are formed and destroyed, T-ϕ parametric maps were constructed for: 1 Soot and soot precursors (C2H2) 2 Nitrogen oxides (NO and NO2) 3 Unburnt intermediates (CH2O, H2 and CO) 4 Important radicals (HO2 and OH) Each map was obtained by plotting data from a large number of simulations for various T-ϕ combinations in a zero-dimensional, 0D, closed Perfectly Stirred Reactor, PSR. Initially, the influences of elapsed reaction time, pressure and EGR level were examined, varying one parameter at a time. Then, since both the elapsed time and pressure change in an engine cycle, the maps were constructed according to engine pressure traces obtained from Computational Fluid Dynamics, CFD, simulations. Since the pressure is changing in elapsed time intervals the maps are called transient.
X