Refine Your Search

Topic

Author

Search Results

Technical Paper

Leveraging Hardware Security to Secure Connected Vehicles

2018-04-03
2018-01-0012
Advanced safety features and new services in connected cars depend on the security of the underlying vehicle functions. Due to the interconnection with the outside world and as a result of being an embedded system a modern vehicle is exposed to both, malicious activities as faced by traditional IT world systems as well as physical attacks. This introduces the need for utilizing hardware-assisted security measures to prevent both kinds of attacks. In this paper we present a survey of the different classes of hardware security devices and depict their different functional range and application. We demonstrate the feasibility of our approach by conducting a case study on an exemplary implementation of a function-on-demand use case. In particular, our example outlines how to apply the different hardware security approaches in practice to address real-world security topics. We conclude with an assessment of today’s hardware security devices.
Journal Article

Timing Analysis for Hypervisor-based I/O Virtualization in Safety-Related Automotive Systems

2017-03-28
2017-01-1621
The increasing complexity of automotive functions which are necessary for improved driving assistance systems and automated driving require a change of common vehicle architectures. This includes new concepts for E/E architectures such as a domain-oriented vehicle network based on powerful Domain Control Units (DCUs). These highly integrated controllers consolidate several applications on different safety levels on the same ECU. Hence, the functions depend on a strictly separated and isolated implementation to guarantee a correct behavior. This requires middleware layers which guarantee task isolation and Quality of Service (QoS) communication have to provide several new features, depending on the domain the corresponding control unit is used for. In a first step we identify requirements for a middleware in automotive DCUs. Our goal is to reuse legacy AUTOSAR based code in a multicore domain controller.
Journal Article

Damping A Passenger Car With A Gyroscopic Damper System

2015-04-14
2015-01-1506
Today, body vibration energy of passenger cars gets dissipated by linear working shock absorbers. A new approach substitutes the damper of a passenger car by a cardanic gimbaled flywheel mass. The constructive design leads to a rotary damper in which the vertical movement of the wheel carrier leads to revolution of the rotational axis of the flywheel. In this arrangement, the occurring precession moments are used to control damping moments and to store vibrational energy. Different damper characteristics are achieved by different induced precession. From almost zero torque output to high torque output, this damper has a huge spread. Next to the basic principal, in this paper an integration in the chassis, including a constructive proposal is shown. A conflict with high torque and high angular velocity leads to a special design. Moreover concepts to deal with all vehicle situations like yawing, rolling and pitching are shown.
Technical Paper

Cockpit Module Analysis Using Poroelastic Finite Elements

2014-06-30
2014-01-2078
Strategies for weight reduction have driven the noise treatment advanced developments with a great success considering the already mastered weight decreases observed in the last years in the automotive industry. This is typically the case for all soft trims parts. In the early 2010's a typical european B-segment car soft trims weights indeed 30 to 40% less than in the early 2000's years. The main driver behind such a gap has been to combine insulation and absorption properties on a single part while increasing the number of layers. This product-process evolution was conducted using a significant improvement in the simulation capacities. In that sense, several studies presenting very good correlation results between Transmission Loss measurements and finite elements simulations on dashboard or floor insulators were presented. One may consider that those kinds of parts have already achieved a considerable improvement in performance.
Technical Paper

Hardware Based Paravirtualization: Simplifying the Co-Hosting of Legacy Code for Mixed Criticality Applications

2013-04-08
2013-01-0186
The increased pressure for power, space, and cost reduction in automotive applications together with the availability of high performance, automotive qualified multicore microcontrollers has lead to the ability to engineer Domain Controller ECUs that can host several separate applications in parallel. The standard automotive constraints however still apply, such as use of AUTOSAR operating system, support for legacy code, hosting OEM supplied code and the ability to determine warranty issues and responsibilities between a group of Tier 1 and Tier 2 vendors who all provide Intellectual Property to the final production ECU. Requirements for safety relevant applications add even more complexity, which in most current approaches demand a reconfiguration of all basic software layers and a major effort to redesign parts of the application code to enable co-existence on the same hardware platform. This paper outlines the conflicting requirements of hosting multiple applications.
Technical Paper

Acoustic Investigations of HVAC Systems in Vehicle

2012-04-16
2012-01-1185
New power train concepts in the automobile industry will decisively change the familiar car acoustics. Secondary acoustic noise sources will be unmasked and dominate the driver's sound experience. The most important secondary noise source is the air conditioning (AC) system. Before a favorable AC sound can actively be designed, it is necessary to identify the acoustic noise sources and find means to influence them. This paper focuses on the AC outlet module which is, apart from the control unit, the only part visible to the customer. Typical acoustic spectra of flowed-through outlets show a characteristic tonality at about 3000 Hz. The knowledge of its aeroacoustic source mechanisms, the inherent implications for the customer and corrective measures especially in automobile surroundings has been limited so far. To analyze this phenomenon in detail, a simplified model outlet that shows the basic aeroacoustic behavior of a series production outlet was constructed and investigated.
Journal Article

Obtaining Diagnostic Coverage Metrics Using Rapid Prototyping of Multicore Systems

2011-04-12
2011-01-1007
With the introduction of the ISO26262 automotive safety standard there is a burden of proof to show that the processing elements in embedded microcontroller hardware are capable of supporting a certain diagnostic coverage level, depending on the required Automotive Safety Integrity Level (ASIL). The current mechanisms used to provide actual metrics of the Built-in Self Tests (BIST) and Lock Step comparators use Register Transfer Level (RTL) simulations of the internal processing elements which force faults into individual nodes of the design and collect diagnostic coverage results. Although this mechanism is robust, it can only be performed by semiconductor suppliers and is costly. This paper describes a new solution whereby the microcontroller is synthesized into a large Field Programmable Gate Array (FPGA) with a test controller on the outside.
Technical Paper

Shape Optimization of a Single Cylinder Engine Crankshaft

2011-04-12
2011-01-1077
Due to increasing demand for environment friendly vehicles with better fuel economy and strict legislations on greenhouse gas emissions, lightweight design has become one of the most important issues concerning the automobile industry. Within the scope of this work lightweight design potentials that a conventional single cylinder engine crankshaft offers are researched through utilization of structural optimization techniques. The objective of the study is to reduce mass and moment of inertia of the crankshaft with the least possible effect on the stiffness and strength. For precise definition of boundary conditions and loading scenarios multi body simulations are integrated into the optimization process. The loading conditions are updated at the beginning of each optimization loop, in which a multi body simulation of the output structure from the previous optimization loop is carried out.
Technical Paper

Acoustics of Hybrid Vehicles

2010-06-09
2010-01-1402
The technology used in hybrid vehicle concepts is significantly different from conventional vehicle technology with consequences also for the noise and vibration behavior. In conventional vehicles, certain noise phenomena are masked by the engine noise. In situations where the combustion engine is turned off in hybrid vehicle concepts, these noise components can become dominant and annoying. In hybrid concepts, the driving condition is often decoupled from the operation state of the combustion engine, which leads to unusual and unexpected acoustical behavior. New acoustic phenomena such as magnetic noise due to recuperation occur, caused by new components and driving conditions. The analysis of this recuperation noise by means of interior noise simulation shows, that it is not only induced by the powertrain radiation but also by the noise path via the powertrain mounts. The additional degrees of freedom of the hybrid drive train can also be used to improve the vibrational behavior.
Journal Article

Dedicated GTL Vehicle: A Calibration Optimization Study

2010-04-12
2010-01-0737
GTL (Gas-To-Liquid) fuel is well known to improve tailpipe emissions when fuelling a conventional diesel vehicle, that is, one optimized to conventional fuel. This investigation assesses the additional potential for GTL fuel in a GTL-dedicated vehicle. This potential for GTL fuel was quantified in an EU 4 6-cylinder serial production engine. In the first stage, a comparison of engine performance was made of GTL fuel against conventional diesel, using identical engine calibrations. Next, adaptations enabled the full potential of GTL fuel within a dedicated calibration to be assessed. For this stage, two optimization goals were investigated: - Minimization of NOx emissions and - Minimization of fuel consumption. For each optimization the boundary condition was that emissions should be within the EU5 level. An additional constraint on the latter strategy required noise levels to remain within the baseline reference.
Technical Paper

Application of Combustion Sound Level (CSL) Analysis for Powertrain

2009-05-19
2009-01-2168
Powertrain noise is a significant factor in determination of the overall vehicle refinement expected by today's discriminating automotive customer. Development of a powertrain to meet these expectations requires a thorough understanding of the contributing noise sources. Specifically, combustion noise greatly impacts the perception of sound levels and quality. The relevance of combustion noise development has increased with the advent of newer efficiency-driven technologies such as direct injection or homogeneous charge compression ignition. This paper discusses the application of a CSL (Combustion Sound Level) analysis-a method for the identification and optimization of combustion noise. Using CSL, it is possible to separate mechanical and combustion noise sources.
Technical Paper

Helmholtz Resonators Acting as Sound Source in Automotive Aeroacoustics

2009-04-20
2009-01-0183
Helmholtz-resonators are discussed in technical acoustics normally in conjunction with attenuation of sound, not with amplification or even production of sound. On the other hand everybody knows the sound produced by a bottle, when someone blows over the orifice. During the investigation of the sound produced in body gaps it was found that the underlying flow physics are closely related to the Helmholtz-resonator. But different from the typical Helmholtz-resonator generated noise – as for example the blown bottle or, from the automotive world, the sun roof buffeting – there is no fluid resonance involved in the process. For body gaps the random pressure fluctuation of the turbulent boundary layer is sufficient to excite the acoustic resonance in the cavity. The sound generation is characterized by a continuous rise in sound pressure level with increasing velocity, the rise is proportional to U with varying exponents.
Technical Paper

Gas Exchange Optimization and the Impact on Emission Reduction for HSDI Diesel Engines

2009-04-20
2009-01-0653
The main tasks for all future powertrain developments are: regulated emissions, CO2-values, comfort, good drivability, high reliability and affordable costs. One widely discussed approach for fuel consumption improvement within passenger car applications, is to incorporate the downsizing effect. To attain constant engine performance an increase of boost pressure and/or rated speed is mandatory. In both cases, the mass flow rate through the intake and exhaust ports and valves will rise. In this context, the impact of the port layout on the system has to be reassessed. In this paper, the impact of the port layout on a modern diesel combustion system will be discussed and a promising concept shall be described in detail. The investigations shown include flow measurements, PIV measurements of intake flow, CFD simulations of the flow field during intake and results from the thermodynamic test bench. One of the important topics is to prove the impact of the flow quality on the combustion.
Technical Paper

Scaling Laws in Automotive Aeroacoustics

2009-04-20
2009-01-0180
Scaling laws - for example the variation of sound pressure with wind speed - are a key to the physical understanding of aeroacoustic phenomena. Aeroacoustics in Automotive applications differs from other fields of aeroacoustics: It is limited to low Mach numbers, the flow field is dominated by separated flows and the radiation into the far field is typically not of primary interest. On the other hand there are of course many common problems and findings shared with other fields in aeroacoustics. Therefore it is important to identify common areas with other, probably more advanced directions in aeroacoustics. But this has to be done without forgetting the practical demands of automotive application. Main sources for interior wind noise in vehicles are leakage noise, cavity noise and the noise generated by separated flows at the outer surface. All three of these noise sources will be investigated in this paper. Of special interest will be the dependence on the wind velocity.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 2: Impact of Fuel Properties on HCCI Combustion

2008-10-06
2008-01-2404
A broad range of diesel, kerosene, and gasoline-like fuels has been tested in a single-cylinder diesel engine optimized for advanced combustion performance. These fuels were selected in order to better understand the effects of ignition quality, volatility, and molecular composition on engine-out emissions, performance, and noise levels. Low-level biofuel blends, both biodiesel (FAME) and ethanol, were included in the fuel set in order to test for short-term advantages or disadvantages. The diesel engine optimized in Part 1 of this study included cumulative engine hardware enhancements that are likely to be used to meet Euro 6 emissions limits and beyond, in part by operating under conditions of Homogeneous Charge Compression Ignition (HCCI), at least over some portions of the speed and load map.
Technical Paper

Advanced Combustion for Low Emissions and High Efficiency Part 1: Impact of Engine Hardware on HCCI Combustion

2008-10-06
2008-01-2405
Two single-cylinder diesel engines were optimised for advanced combustion performance by means of practical and cumulative hardware enhancements that are likely to be used to meet Euro 5 and 6 emissions limits and beyond. These enhancements included high fuel injection pressures, high EGR levels and charge cooling, increased swirl, and a fixed combustion phasing, providing low engine-out emissions of NOx and PM with engine efficiencies equivalent to today's diesel engines. These combustion conditions approach those of Homogeneous Charge Compression Ignition (HCCI), especially at the lower part-load operating points. Four fuels exhibiting a range of ignition quality, volatility, and aromatics contents were used to evaluate the performance of these hardware enhancements on engine-out emissions, performance, and noise levels.
Technical Paper

End-To-End Protection for SIL3 Requirements in a FlexRay Communication System

2008-04-14
2008-01-0112
This paper proposes end-to-end protection mechanisms to be added to a generic FlexRay network in order to achieve fault detection and integrity levels sufficient for a SIL3 fail safe communication system. The mechanisms are derived from the random hardware failure modes to be considered for communication controllers according to IEC 61508. Mechanisms provided by the FlexRay protocol are pointed out. Additional features necessary to fulfil the requirements are discussed. It is shown how to calculate the failure rate probabilities of the CRC used as a safety code with respect to EN 50159.
Technical Paper

Potential of the Spray-guided Combustion System in Combination with Turbocharging

2008-04-14
2008-01-0139
Based on the TurboDISI engine presented earlier [1], [2], a new Spray Guided Turbo (SGT) concept with enhanced engine performance was developed. The turbocharged engine was modified towards utilizing a spray-guided combustion system with a central piezo injector location. Higher specific power and torque levels were achieved by applying specific design and cooling solutions. The engine was developed utilizing a state-of-the-art newly developed charge motion design (CMD) process in combination with single cylinder investigations. The engine control unit has a modular basis and is realized using rapid prototyping hardware. Additional fuel consumption potentials can be achieved with high load EGR, use of alternative fuels and a hybrid powertrain. The CO2 targets of the EU (120 g/km by 2012 in the NEDC) can be obtained with a mid-size vehicle applying the technologies presented within this paper.
Technical Paper

Optimized Layout of Gasoline Engines for Hybrid Powertrains

2008-01-09
2008-28-0024
Due to the complex powertrain layout in hybrid vehicles, different configurations concerning internal combustion engine, electric motor and transmission can be combined - as is demonstrated by currently produced hybrid vehicles ([1], [2]). At the Institute for Combustion Engines (VKA) at RWTH Aachen University a combination of simulation, Design of Experiments (DoE) and numerical optimization methods was used to optimize the combustion engine, the powertrain configuration and the operation strategy in hybrid powertrains. A parametric description allows a variation of the main hybrid parameters. Parallel as well as power-split hybrid powertrain configurations were optimized with regard to minimum fuel consumption in the New European Driving Cycle (NEDC). Besides the definition of the optimum configuration for engine, powertrain and operation strategy this approach offers the possibility to predict the fuel consumption for any modifications of the hybrid powertrains.
Technical Paper

Active Noise Cancellation at Powertrain Oil Pan

2007-05-15
2007-01-2422
Under city driving conditions, the powertrain represents one of the major vehicle exterior noise sources. Especially at idle and during full load acceleration, the oil pan contributes significantly to the overall powertrain sound emission. The engine oilpan can be a significant contributor to the powertrain radiated sound levels. Passive optimization measures, such as structural optimization and acoustic shielding, can be limited by e.g. light-weight design, package and thermal constraints. Therefore, the potential of the Active Structure Acoustic Control (ASAC) method for noise reduction was investigated within the EU-sponsored project InMAR. The method has proven to have significant noise reduction potential with respect to oil pan vibration induced noise. The paper reports on activities within the InMAR project with regard to a passenger car oil pan application of an ASAC system based on piezo-ceramic foil technology.
X