Refine Your Search

Topic

Search Results

Technical Paper

Alternative Measures of Restraint System Effectiveness: Interaction with Crash Severity Factors

1982-02-01
820798
The effectiveness of restraint systems in preventing fatalities or reducing injury has been estimated by extrapolation of data from several sources: (1) Sled tests with dummies (2) Analysis of accident case studies (3) Statistical comparison of belted and unbelted persons in crashed cars. (4) Before and after studies (e.g., with respect to belt-usage legislation, or as with the 1974 starter-interlock program) Fatality reduction estimated by the case study method is on the order of 30 percent, but by the statistical comparison method at 50 percent or sometimes as high as 60 percent. Other differences (e.g., driving habits) between belted and unbelted persons explain the disagreement between the two estimates. More complete analysis of available accident data suggests that the higher values were obtained without correction for such factors as crash severity or occupant age.
Technical Paper

Thoraco-Abdominal Response and Injury

1980-09-01
801305
This study Investigates the response of human cadavers1, and live anesthetized and post-mortem primates and canines2, to blunt lateral thoraco-abdominal impact. There were 12 primates: 5 post-mortem and 7 live anesthetized; 10 canines; 1 post-mortem and 9 live anesthetized; and 3 human cadavers. A 10 kg free-flying mass was used to administer the impact in the right to left direction. To produce the varying degrees of injury, factors including velocity, padding of the impactor surface, location of impact site, and impactor excursion were adjusted. The injuries were evaluated by gross autopsy, and in the case of live subjects, current clinical methods such as sequential peritoneal lavage and biochemical assays were also employed. Mechanical measurements included force time history, intraortic pressure, and high-speed cineradiography to define gross organ motion.
Technical Paper

The MVMA Two-Dimensional Crash Victim Simulation

1974-02-01
741195
This paper presents the various features and operational properties of a two-dimensional mathematical model of crash victim motions. The earliest forms of this model can be traced to the early 1960s. Developmental work on two-dimensional models then continued both within the automotive industry and in independent organizations such as the Highway Safety Research Institute (HSRI). The most recent product of this activity is the MVMA two-dimensional mathematical crash victim simulation developed at HSRI for the Motor Vehicle Manufacturers Association. The features of this model include: 1. An eight mass representation of the human body where contact between the crash victim and the vehicle is represented in terms of independent force-deformation properties of the victim and the vehicle. 2. An extensible multi-joint neck and a realistically flexible shoulder joint. 3. A real-line representation of the vehicle interior or exterior where shape is given as a network of points. 4.
Technical Paper

Analysis of Sources of Error in Headlamp Aim

1974-02-01
740312
The literature on headlamp aiming is surveyed in detail to pinpoint the various sources and magnitudes of aim variance. Four major sources of variance are identified (differences between beam and mounting plane, photometric changes in use, long axis alignment, and human factors), along with a number of others of lesser consequence. Illustrations are offered showing the expected population variance under a variety of conditions. It is apparent that, at the present state-of-the-art, a substantial percentage of the lamp population can be expected to be beyond the limits recommended in SAE J599c. It is further apparent that this would be true regardless of whether or not a vehicle inspection program is in operation. Recommendations are given regarding research emphasis in headlighting. Ways of reducing variance from the most significant sources are considered and recommendations offered.
Technical Paper

Human Chest Impact Protection Criteria

1974-02-01
740589
Serious injuries are caused to the chest and thoracic organs both in front and side automobile collisions, and statistical surveys indicate that overall chest injuries are the third most frequent after head and the lower limbs. For safer design of restraint systems and vehicle interiors experimental data has to be obtained to establish chest injury criteria. Unembalmed human cadavers were used to conduct nine frontal and fourteen lateral impacts including four with a simulated arm rest. All impacts used a six inch (15.2 cm) diameter impactor with impact velocities ranging from 12 mph (19.3 kph) to 20 mph (32.2 kph). Chest impacts were also conducted on rhesus monkeys and baboons to establish primate-human injury scaling criteria. Four human volunteers were used to obtain static load deflection curves in the lateral and frontal directions. The results of the above experiments and those conducted by other investigators are presented and analyzed.
Technical Paper

A Systems Engineering Evaluation of Passive Restraint Systems for Crash-Impact Attenuation in Air Transport Aircraft

1974-02-01
740044
Advanced crash-impact protective equipment and techniques which have application to crew and passenger crash safety in jet transport aircraft have been evaluated. Thirty-two state-of-the-art concepts have been analyzed from a systems engineering viewpoint with respect to several engineering, psychological, and medical disciplines. In order to provide a framework to determine the function level of each concept, an event-oriented flow chart of the crash and escape event has been prepared. The 17 events occurring during a crash are included, beginning with system installation and concluding with emergency evacuation of a disabled aircraft. Performance with respect to the events on the flow chart are rated in terms of hazards of system use, maintainability, reliability, human factors, and other technological considerations.
Technical Paper

Impact Injury Mechanisms in Abdominal Organs

1973-02-01
730968
Blunt abdominal trauma is a major cause of death in the United States. However, little experimental work has been done to clarify the mechanism of blunt abdominal injury and to quantify tolerance parameters for the abdominal organs. This paper describes a joint study by the Highway Safety Research Institute and the Section of General Surgery of The University of Michigan in which direct impacts were applied to livers and kidneys. The tests were performed in a high-speed testing machine at a controlled ram velocity and stroke limit. The organ was surgically mobilized in anesthesized Rhesus monkeys and then placed on a load cell while still being perfused in the living animal. Tests were performed at ram speeds of 120, 6000, and 12000 in/min (5, 250,and 500 cm/s). The resulting load-deflection data were normalized and average stress-strain curves plotted for each test. In addition, the resulting injury severity was estimated immediately after impact using an injury scale of 1 to 5.
Technical Paper

Side Impact Tolerance to Blunt Trauma

1973-02-01
730979
The object of this research program has been to extend the scope of earlier work to include long-duration head impacts and to develop new scaling relationships to allow extrapolation of impact data from infrahuman primates to living humans. A series of living primate side impacts to the head and torso was conducted in parallel with a series of impacts to human cadavers. Dimensional analysis techniques were employed to estimate in vivo human tolerance to side injury. The threshold of closed brain injury to humans was found to be 76 g for a pulse duration of 20 ms and an impact velocity of 43 ft/s (13.2 m/s). The maximum tolerable penetration to the chest was found to be 2.65 in (6.72 cm) for both the left and right sides. Scaling of abdominal injuries to humans was accomplished by employing a factor that relates impact contact area, animal mass, impact force, and pulse duration to injury severity.
Technical Paper

Refinement and Application of Open-Loop Limit-Maneuver Response Methods

1973-02-01
730491
An open-loop limit-maneuver test methodology was refined from an earlier study which hypothesized a relationship between vehicle performance and highway safety. Refinements in methodology were attained in the areas of test apparatus, test procedure, data processing, and performance interpretation. Open-loop response measurements were conducted on a representative sample of 12 contemporary passenger vehicles. Numeric characterizations of performance are presented, indicating the range and distribution of response properties exhibited by the vehicle sample.
Technical Paper

Mechanical Properties of Truck Tires

1973-02-01
730183
Mechanical properties have been obtained from a recent series of truck tire tests using the Highway Safety Research Institute's (HSRI) flat bed tire testing machine. In addition to the vertical and lateral spring rates, a set of three parameters characterizing traction properties of the rolling tire are defined and measured. The influence of tire load and inflation pressure on mechanical properties is found to be significant. Carpet plots of lateral force versus tire operating variables such as camber and slip angle are used to illustrate the effect of changes in ply rating, tread pattern, and wear. Corresponding variations in the mechanical properties are noted. The results of an experiment to determine the relationship between single tire and dual tire force and moment producing capabilities are also described.
Technical Paper

Cervical Range of Motion and Dynamic Response and Strength of Cervical Muscles

1973-02-01
730975
Basic physical characteristics of the neck have been defined which have application to the design of biomechanical models, anthropometric dummies, and occupant crash protection devices. The study was performed using a group of 180 volunteers chosen on the basis of sex, age (18-74 years), and stature. Measurements from each subject included anthropometry, cervical range-of-motion (observed with both x-rays and photographs), the dynamic response of the cervical flexor and extensor muscles to a controlled jerk, and the maximum voluntary strength of the cervical muscles. Data are presented in tabular and graphic form for total range-of-motion, cervical muscle reflex time, decelerations of the head, muscle activation time, and cervical muscle strength. The range-of-motion of females was found to average 1-12 deg greater than that of males, depending upon age, and a definite degradation in range-of-motion was observed with increasing age.
Technical Paper

Parameter Study of Biomechanical Quantities in Analytical Neck Models

1972-02-01
720957
A parameter study is performed involving several analytical vehicle occupant models in current use, with investigation of neck representations a primary goal. Side, oblique, and rear impact situations are investigated. Attention is given to the effects of varying head-neck mass and moments of inertia, anthropometry, muscle strength, and location, as well as well as strength, of motion-limiting “stops.” A model that replaces the conventional simple ball-joint neck with a two-joint, extensible neck is studied. This model also makes use of joint-stop ellipses to approximate the anatomical range for relatively free angular motion at a joint. Allowance is made for the effect of muscle contraction on occupant dynamics as a function of the degree of voluntary or involuntary tightening of the muscles, based upon experimental findings. A discrete parameter neck model that treats the cervical spine as a linkage of rigid vertebrae and massless, deformable discs is discussed briefly.
Technical Paper

Improved Neck Simulation for Anthropometric Dummies

1972-02-01
720958
This paper describes the development of an improved neck simulation that can be adapted to current anthropometric dummies. The primary goal of the neck design is to provide a reasonable simulation of human motion during impact while maintaining a simple, rugged structure. A synthesis of the current literature on cervical spine mechanics was incorporated with the results of x-ray studies of cervical spine mobility in human volunteers and with the analysis of head-neck motions in human volunteer sled tests to provide a background for the design and evaluation of neck models. Development tests on neck simulations were carried out using a small impact sled. Tests on the final prototype simulation were also performed with a dummy on a large impact sled. Both accelerometers and high-speed movies were used for performance evaluation.
Technical Paper

User-Oriented Mathematical Crash Victim Simulator

1972-02-01
720962
During recent years, the Highway Safety Research Institute (HSRI) has developed and validated two- and three-dimensional models describing the motions and forces acting upon an occupant during a collision. These inexpensive-to-operate models are performing with approximately 90% accuracy in parametric studies of classical crash configurations. In our own validation procedures, contacts with automobile development and design groups, and discussions with federal agencies, certain shortcomings of mathematical modeling procedures have been isolated. These include primarily the inability of the user to determine and input data to the computer programs and also to specify force, motion, velocity, and acceleration output data in a form applicable to the various vehicle design, human tolerance, and compliance tasks for which the models have been developed.
Technical Paper

A Comparison Between Human Kinematics and the Predictions of Mathematical Crash Victim Simulators

1971-02-01
710849
A study has been conducted as an initial step in determining the differences observed between the motions of a living human impact sled test subject and a dummy test subject. The mechanism which is proposed for accomplishing this is the HSRI Two-Dimensional Mathematical Crash Victim Simulator. A series of measurements were taken on human test subjects, including classical and nonclassical anthropometric measurements, range of motion measurements for the joints, and maximum foot force measurements. A series of mathematical expressions has been used to predict body segment weight, centers of gravity, and moments of inertia using the results of the various body measurements. It was then possible to prepare a data set for use with the mathematical model.
Technical Paper

Michigan Injury Criteria Hypothesis and Restraint System Effectiveness Index

1971-02-01
710872
This paper describes an injury criteria model implemented in computer language, and a restraint system effectiveness index for evaluating the degree to which the vehicle environment can prevent or reduce occupant injuries. The need for criteria of this type is based on the fact that if the degree of protection offered to a vehicle occupant by a restraint system or a vehicle interior (a function of the distribution and magnitude of the forces transmitted to the occupant) could be expressed in quantitative terms, then, more meaningful comparisons could be made between restraint configurations, and, areas of needed biomechanical research and statistical accident investigations could be more readily identified on the basis of the sensitivity of the results when the injury or effectiveness criteria are applied. The injury criteria model consists of three parts: 1.
Technical Paper

Door Crashworthiness Criteria

1971-02-01
710864
A study of the biomechanical factors concerned with the design of side structures and doors for crashworthiness has been made. Questions regarding optimum stiffness, location of reinforcing members, effect of armrests, and padding have been answered within the framework of injury criteria models. Results of animal studies, cadaver studies, and anthropometric dummies have been combined to produce injury criteria for lateral impacts to the head, thorax, and abdomen. Impacts were applied utilizing a specially designed “air gun” in a laboratory environment emphasizing reproducibility and control. Full-scale crash simulations were performed on an impact sled to verify the results of the more specialized tests and analyses. Scaled models of current production doors were used in the animal series. Scaling relationships for various species of animals have been developed and extrapolated to man. Significant differences in right and left side tolerances to impact were noted and detailed.
Technical Paper

Development of Braking Performance Requirements for Buses, Trucks, and Tractor-Trailers

1971-02-01
710046
This paper reports the results of a study which had as its aim the determination of braking performance currently achievable by buses, trucks, and tractor-trailers, and the improvement of this performance by use of advanced braking systems. Both vehicle testing and analytical techniques, including dynamic modeling and simulation, were used in the program. Performance qualities essential to braking systems are enumerated, which, when given quantitative definition in the light of performance achievable, can form the basis of rational performance requirements for commercial vehicles.
Technical Paper

Proportional Braking of Solid-Frame Vehicles

1971-02-01
710047
An engineering analysis of vehicle braking is presented in terms of the utilization of available road friction. Physical relations are derived which allow the determination of optimum brake force distribution on front and rear wheels as a function of axle loading. Ideal braking distribution curves are shown for a typical vehicle in the loaded and unloaded conditions. A technique is suggested for rational design of braking system parameters. It is applied to the case of a two-stage proportioning system, and is validated by experimental data from tests using a specially equipped light truck. It is concluded that a proper design analysis can establish a combination of braking system parameters which results in improved utilization of available friction. A simple, self-adjusting brake proportioning system can be a highly cost-effective safety device for truck use.
Technical Paper

The Dynamic Performance of Articulated Highway Vehicles - A Review of the State-of-the-Art

1971-02-01
710223
This paper reviews the state of theoretical and experimental technology relative to the dynamic performance of articulated highway vehicles. The review contains three major sections, corresponding to the traditional breakdown of vehicle performance: directional performance, braking performance, and combined directional and braking performance. An attempt is made to take a frankly evaluative point of view and to point out knowledge gaps and unanswered questions, in addition to documenting previous accomplishments and progress. The paper concludes with some recommendations for future research consistent with the findings of the review.
X