Refine Your Search

Topic

Author

Search Results

Technical Paper

Progressive Meta-Model Based Design Optimization for Lithium-ion Battery Pack to Improve Cell Cycle Life

2023-04-11
2023-01-0512
Lithium-ion battery has advantages of high energy density and cost effectiveness than other types of batteries. However due to the low mechanical stability, their performance is strongly influenced by environmental conditions. Especially, external pressure on a cell surface is a crucial factor because an appropriate force can improve battery cycle life, but excessive force may cause structural failure. In addition, battery pack is composed of various components so that uncertainties in dimension and material properties of each component can cause a wide variance in initial pressure. Therefore, it is important to optimize structural design of battery pack to ensure initial pressure in an effective range. In this paper, target stiffness of module structure was determined based on cell level cycle life test, then structural design has been optimized for weight reduction. Cell cycling tests were performed under different stiffness conditions and analyzed with regression model.
Technical Paper

Analysis of the Correlation between Flow and Combustion Characteristics in Spark-Ignited Engine

2021-04-06
2021-01-0463
As global emission standards are becoming more stringent, it is necessary to increase thermal efficiency through the high compression ratio in spark-ignited engines. Various studies are being conducted to mitigate knocking caused by an increased compression ratio, which requires an understanding of the combustion phenomena inside the combustion chamber. In particular, the in-cylinder flow is a major factor affecting the entire combustion process from the generation to the propagation of flames. In the field of spark-ignited engine research, where interest in the concept of lean combustion and the expansion of the EGR supply is increasing, flow analysis is essential to ensure a rapid flame propagation speed and stable combustion process. In this study, the flow around the spark plug was measured by the Laser Doppler Velocimetry system, and the correlation with combustion in spark-ignited engines was analyzed.
Technical Paper

The Effect of Driver's Behavior and Environmental Conditions on Thermal Management of Electric Vehicles

2020-04-14
2020-01-1382
Worldwide projections anticipate a fast-growing market share of the battery electric vehicles (BEVs) to meet stringent emissions regulations for global warming and climate change. One of the new challenges of BEVs is the effective and efficient thermal management of the BEV to minimize parasitic power consumption and to maximize driving range. Typically, the total efficiency of BEVs depends on the performance and power consumption of the thermal management system, which is highly affected by several factors, including driving environments (ambient temperature and traffic conditions) and driver's behavior (aggressiveness). Therefore, this paper investigates the influence of these factors on energy consumption by using a comprehensive BEV simulation integrated with a thermal management system model. The vehicle model was validated with experimental data, and a simulation study is performed by using the vehicle model over various traffic scenarios generated from a traffic simulator.
Technical Paper

A Study on NVH Performance Improvement of TPE Air Intake Hose Based on Optimization of Design and Material

2019-06-05
2019-01-1491
Environmental and fuel economy regulations (Eu 6d and WLTP RDE) on automobiles have been tightened recently. To counter this regulation, the global automobile industry is focusing on weight reduction, fuel efficient turbo charger, cooled EGR, thermal management, low friction and so on. However, the high-speed turbocharger makes turbulence, and resulting in airflow noise. This noise is transmitted indoor through the air intake system, which adversely affects the vehicle's competitiveness. Therefore, for turbo engine, it is essential to reduce the noise of the air intake system. The air intake system consists of air cleaner, air filter, air intake hose and air duct. The air flow noise of turbo-engine is mainly the emission noise emitted from the walls of air intake system. And the transfer path of turbo noise is in order of air intake hose, air cleaner and air duct. Therefore, it is effective to reduce the noise of the air intake hose located at the beginning of noise transfer path.
Technical Paper

Development of Ultra-Stable Cu-SCR Aftertreatment System for Advanced Lean NOx Control

2019-04-02
2019-01-0743
The integration of SCR catalyst into diesel-particulate filter (SDPF) may be one of most viable ways to meet upcoming stringent emission regulations with new test protocols such as Worldwide harmonized Light vehicles Test Cycles (WLTC) and Real Driving Emissions (RDE) requirements. The chabazite-structured SSZ-13-based catalysts enabled the wide implementation of urea-SCR technology for mobile applications due to their robust thermal stability up to 750°C compared to the thermally unstable ZSM-5-based technologies. However, the thermally stable Cu-SSZ-13 catalyst starts losing its initial activity with the increase of aging time at 850°C, where the SCR catalyst on SDPF can possibly be exposed during filter regeneration under a drop-to-idle (DTI) condition. Therefore, more durable SCR catalysts that survive under higher temperatures have been strongly desired in automotive industry. Recently, we found Cu-exchanged high silica LTA revealed an excellent hydrothermal stability.
Technical Paper

A Development of Aluminum EGR Cooler for Weight Reduction and Fuel Economy

2018-04-03
2018-01-0102
As environmental problems such as global warming are emerging, regulations on automobile exhaust gas are strengthened and various exhaust gas reduction technologies are being developed in various countries in order to satisfy exhaust emission regulations. Exhaust gas recirculation (EGR) technology is a very effective way to reduce nitrogen oxides (NOx) at high combustion temperatures by using EGR coolers to lower the combustion temperature. This EGR cooler has been mass-produced in stainless steel, but it is expensive and heavy. Recently, high efficiency and compactness are required for the EGR cooler to meet the new emission regulation. If aluminum material is applied to the EGR cooler, heat transfer efficiency and light weight can be improved due to high heat transfer coefficient of aluminum compared to conventional stainless steel, but durability is insufficient. Therefore, the aluminum EGR cooler has been developed to enhance performance and durability.
Technical Paper

Development of Parallel and Direct Cooling System for EV/FCEV Inverter

2018-04-03
2018-01-0454
This paper presents the direct liquid-cooled power module with the circular pin fin which is the inverter parallel cooling system for high output EV/FCEV. The direct cooling system of a conventional inverter is designed to supply coolant along the direction in which the heating element such as Si-chip is disposed and discharge coolant to the opposite side. In case of the inverter, the higher the output is, the larger temperature difference between inlet and outlet becomes due to the heat exchange of the heat generation element, so that temperature difference depends on the position of Si-chip. Since lifetime is judged on the basis of maximum temperature of Si-chip, the inverter itself must be replaced or discarded due to durability of the inverter even though Si-chip can drive further. The simple way to solve this problem is to increase cooling flow rate, but this leads to excessive increase in pressure loss due to circular pin fin.
Journal Article

Development of Standardized Battery Pack for Next-Generation PHEVs in Considering the Effect of External Pressure on Lithium-Ion Pouch Cells

2018-04-03
2018-01-0439
The performance and marketability of eco-friendly vehicles highly depend on their high-voltage battery system. Lithium-ion pouch cells have advantages of high energy density and cost-effectiveness than other types of batteries. However, due to their low mechanical stability, their characteristics are strongly influenced by external conditions. Especially, external pressure on pouch cell is a crucial factor for the performance, life cycle, and structural safety of battery pack. Therefore, optimizing pressure level has been a critical consideration in designing battery pack structures for lithium-ion pouch cell. In this work, we developed an optimized structure of the battery module and pack to apply appropriate pressure on pouch cells. They also include a standardization strategy to meet the varied demand in capacity and power for automotive application.
Technical Paper

Evaluating the Effect of Two-Stage Turbocharger Configurations on the Perceived Vehicle Acceleration Using Numerical Simulation

2016-04-05
2016-01-1029
Charge boosting strategy plays an essential role in improving the power density of diesel engines while meeting stringent emissions regulations. In downsized two-stage turbocharged engines, turbocharger matching is critical to achieve desired boost pressure while maintaining sufficiently fast transient response. A numerical simulation model is developed to evaluate the effect of two-stage turbocharger configurations on the perceived vehicle acceleration. The simulation model developed in GT-SUITE consists of engine, drivetrain, and vehicle dynamics sub-models. A model-based turbocharger control logic is developed in MATLAB using an analytical compressor model and a mean-value engine model. The components of the two-stage turbocharging system evaluated in this study include a variable geometry turbine in the high-pressure stage, a compressor bypass valve in the low-pressure stage and an electrically assisted turbocharger in the low-pressure stage.
Journal Article

An Improvement of Brake Squeal CAE Model Considering Dynamic Contact Pressure Distribution

2015-09-27
2015-01-2691
In the brake system, unevenly distributed disc-pad contact pressure not only leads to a falling-off in braking feeling due to uneven wear of brake pads, but also a main cause of system instability which leads to squeal noise. For this reason there have been several attempts to measure contact pressure distribution. However, only static pressure distribution has been measured in order to estimate the actual pressure distribution. In this study a new test method is designed to quantitatively measure dynamic contact pressure distribution between disc and pad in vehicle testing. The characteristics of dynamic contact pressure distribution are analyzed for various driving conditions and pad shape. Based on those results, CAE model was updated and found to be better in detecting propensity of brake squeal.
Technical Paper

Assessing Panel Noise Contribution of a Car Engine Using Particle Velocity Sensors

2015-06-15
2015-01-2248
In order to apply an effective noise reduction treatment determining the contribution of different engine components to the total sound perceived inside the cabin is important. Although accelerometer or laser based vibration tests are usually performed, the sound contributions are not always captured accurately with such approaches. Microphone based methods are strongly influenced by the many reflections and other sound sources inside the engine bay. Recently, it has been shown that engine radiation can be effectively measured using microphones combined with particle velocity sensors while the engine remains mounted in the car [6]. Similar results were obtained as with a dismounted engine in an anechoic room. This paper focusses on the measurement of the transfer path from the engine to the vehicle interior in order to calculate the sound pressure contribution of individual engine sections at the listener's position.
Technical Paper

A Study of LNT & Urea SCR on DPF System to Meet the Stringent Exhaust Emission Regulation

2014-10-13
2014-01-2810
In diesel engine development, the new technology is coming out to meet the stringent exhaust emission regulation. The regulation demands more eco-friendly vehicles. Euro6c demands to meet not only WLTP mode, but also RDE(Real Driving Emission). In order to satisfy RDE mode, the new technology to reduce emissions should cover all operating areas including High Load & High Speed. It is a big challenge to reduce NOx on the RDE mode and a lot of DeNOx technologies are being developed. So the new DeNOx technology is needed to cover widened operating area and strict acceleration / deacceleration. The existing LNT(Lean NOx Trap) and Urea SCR(Selective Catalytic Reduction) is necessary to meet the typical NEDC or WLTP, but the RDE mode demands the powerful DeNOx technology. Therefore, the LNT & Urea SCR on DPF was developed through this study.
Journal Article

Direct Sound Radiation Testing on a Mounted Car Engine

2014-06-30
2014-01-2088
For (benchmark) tests it is not only useful to study the acoustic performance of the whole vehicle, but also to assess separate components such as the engine. Reflections inside the engine bay bias the acoustic radiation estimated with sound pressure based solutions. Consequently, most current methods require dismounting the engine from the car and installing it in an anechoic room to measure the sound emitted. However, this process is laborious and hard to perform. In this paper, two particle velocity based methods are proposed to characterize the sound radiated from an engine while it is still installed in the car. Particle velocity sensors are much less affected by reflections than sound pressure microphones when the measurements are performed near a radiating surface due to the particle velocity's vector nature, intrinsic dependency upon surface displacement and directivity of the sensor. Therefore, the engine does not have to be disassembled, which saves time and money.
Technical Paper

Optimization of Dual Loop EGR of a V6 3.0 Liter Diesel Engine for CO2 Reduction

2013-04-08
2013-01-0316
As the markets require a more environmentally friendly and high fuel consumption vehicle, we have to satisfy bilateral target. Though many new after-treatment techniques like LNT, SCR are investigated to meet both strong emission regulations and low fuel consumption, high cost of these techniques should be solved to adopt widely. This paper describes how to optimize the dual loop EGR as a tool to reduce CO₂ emission of a HSDI diesel engine in the passenger car application. Focus is not only on the optimization to obtain the maximum CO₂ reduction but also on how to assess and overcome various side effects. As a result of careful optimization, as much as 6% CO₂ reduction was achieved by introduction of low pressure EGR loop, maintaining the same boundary conditions as those with high pressure EGR loop only.
Technical Paper

Improvement of Fuel Economy and Transient Control in a Passenger Diesel Engine Using LP(Low Pressure)-EGR

2011-04-12
2011-01-0400
Diesel engines are the most commonly used power train of the freight and public transportations in the world. From the viewpoint of global warming restraint, however, reduction of exhaust emissions from the diesel engine is urgent demand. Stringent emission regulations are being proposed with growing concern on NOx, PM and CO2 emissions. Future emission regulations require advanced emission control technologies, such as SCR(Selective Catalytic Reduction), LNT(Lean NOx Trap) and EGR(Exhaust Gas Recirculation). The EGR is a commonly used technique to reduce emission. In this study, a LP-EGR(Low Pressure Exhaust Gas Recirculation) system was investigated to evaluate its potential on emission reduction and fuel economy improvement, especially for a passenger diesel engine. A 3.0ℓ diesel engine equipped with the LP-EGR system was tested using an in-house control algorithm.
Technical Paper

Development of Engine Control Using the In-Cylinder Pressure Signal in a High Speed Direct Injection Diesel Engine

2011-04-12
2011-01-1418
Emissions regulations are becoming more severe, and they remain a principal issue for vehicle manufacturers. Many engine subsystems and control technologies have been introduced to meet the demands of these regulations. For diesel engines, combustion control is one of the most effective approaches to reducing not only engine exhaust emissions but also cylinder-by-cylinder variation. However, the high cost of the pressure sensor and the complex engine head design for the extra equipment are stressful for the manufacturers. In this paper, a cylinder-pressure-based engine control logic is introduced for a multi-cylinder high speed direct injection (HSDI) diesel engine. The time for 50% of the mass fraction to burn (MFB50) and the IMEP are valuable for identifying combustion status. These two in-cylinder quantities are measured and applied to the engine control logic.
Technical Paper

Hyundai's New Generation 1.8L Gasoline Engine

2011-04-12
2011-01-0417
Hyundai has developed a new 1.8L gasoline engine replacing the previous engine for new compact/mid-size vehicles. This new engine will be installed on the debut of the new 2011 Hyundai Elantra in the North American market. The new engine has achieved high performance and improved fuel consumption by applying dual continuously variable valve timing and a two step variable induction system, which has enabled both low and mid speed torque as well as high speed power. In addition, reduced noise levels were realized by optimizing lower structure components and induction parts while also focusing on maintaining lighter weight. The engine meets U.S. SULEV and EURO 5 emission regulations. This paper presents an overview of the new 1.8L I4 gasoline engine (Nu Engine) as well as the features of each technology which embodies a well tuned engine with respect to high engine performance, lowered fuel consumption, reduced emissions and reduced NVH.
Technical Paper

Investigation of Gap Deflector Efficiency for Reduction of Sunroof Buffeting

2009-05-19
2009-01-2233
The efficiency of a gap-type of deflector for suppressing vehicle sunroof buffeting is studied in this work. Buffeting is an unpleasant low frequency booming caused by flow-excited Helmholtz resonance of the interior cabin. Accurate prediction of this phenomenon requires accounting for the bi-directional coupling between the transient shear layer aerodynamics (vortex shedding) and the acoustic response of the cabin. Numerical simulations were performed using a CFD/CAA numerical method based on the Lattice Boltzmann Method (LBM). The well established LBM approach provides the time-dependent solution to the compressible Navier-Stokes equations, and directly captures both turbulent and acoustic pressure fluctuations over a wide range of scales given adequate computational grid resolution. In this study the same gap-type deflector configuration is installed on two different types of vehicles, a SUV and a sedan.
Technical Paper

Characteristics of the Luxury Sound Quality of a Premium Class Passenger Car

2009-05-19
2009-01-2183
Luxury sound is one of the most important sound qualities in a premium passenger car. Previous work has shown that, because of the effects of many different interior sounds, it is difficult to evaluate the luxury sound objectively by using only the A-weighted sound pressure level. In this paper, the characteristics of such sound were first investigated by a systematic approach and a new objective evaluation method for luxury sound-the luxury sound quality index--which was developed by the systematic combination of the seven major interior sound quality indexes based on path analysis. The seven major sounds inside a passenger car were selected by a basic investigation evaluated by the members of a luxury automotive club. Seven major interior sound quality indexes were developed by using sound metrics, which are the psychoacoustic parameters, and the multiple regression method used for the modeling of the correlation between objective and subjective evaluation.
Technical Paper

A Numerical and Experimental Study on Power Steering Shudder

2008-04-14
2008-01-0501
Shudder vibration of a hydraulic power steering system during parking maneuver was studied with numerical and experimental methods. To quantify vibration performance of the system and recognize important stimuli for drivers, a shudder metric was derived by correlation between objective measurements and subjective ratings. A CAE model for steering wheel vibration analysis was developed and compared with measured data. In order to describe steering input dependency of shudder, a new dynamic friction modeling method, in which the magnitude of effective damping is determined by average velocity, was proposed. The developed model was validated using the measured steering wheel acceleration and the pressure change at inlet of the steering gear box. It was shown that the developed model successfully describes major modes by comparing the calculated FRF of the hydraulic system with measured one from the hydraulic excitation test.
X