Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Improving Engine Efficiency and Emission Reduction Potential of HVO by Fuel-Specific Engine Calibration in Modern Passenger Car Diesel Applications

2017-10-08
2017-01-2295
The optimization study presented herein is aimed to minimize the fuel consumption and engine-out emissions using commercially available EN15940 compatible HVO (Hydrogenated Vegetable Oil) fuel. The investigations were carried out on FEV’s 3rd generation HECS (High Efficiency Combustion System) multi-cylinder engine (1.6L, 4 Cylinder, Euro 6). Using a global DOE approach, the effects of calibration parameters on efficiency and emissions were obtained and analyzed. This was followed by a global optimization procedure to obtain a dedicated calibration for HVO. The study was aiming for efficiency improvement and it was found that at lower loads, higher fractions of low pressure EGR in combination with lower fuel injection pressures were favorable. At higher loads, a combustion center advancement, increase of injection pressure and reduced pilot injection quantities were possible without exceeding the noise and NOx levels of the baseline Diesel.
Journal Article

Advanced Fuel Formulation Approach using Blends of Paraffinic and Oxygenated Biofuels: Analysis of Emission Reduction Potential in a High Efficiency Diesel Combustion System

2016-10-17
2016-01-2179
This work is a continuation of earlier results presented by the authors. In the current investigations the biofuels hydrogenated vegetable oil (HVO) and 1-octanol are investigated as pure components and compared to EN 590 Diesel. In a final step both biofuels are blended together in an appropriate ratio to tailor the fuels properties in order to obtain an optimal fuel for a clean combustion. The results of pure HVO indicate a significant reduction in CO-, HC- and combustion noise emissions at constant NOX levels. With regard to soot emissions, at higher part loads, the aromatic free, paraffinic composition of HVO showed a significant reduction compared to EN 590 petroleum Diesel fuel. But at lower loads the high cetane number leads to shorter ignition delays and therefore, ignition under richer conditions.
Technical Paper

Exhaust-Aftertreatment Integrated, DoE-based Calibration

2012-04-16
2012-01-1303
For on- and off-highway applications in 2012/2014 new legislative emissions requirements will be applied for both European (EURO 6/stage 4) and US (US 2010/Tier4 final) standards. Specifically the NOX-emission limit will be lowered down to 0.46 g/kWh (net power ≻ 56 kW (EU)/130 kW (US) - 560 kW). While for the previous emissions legislation various ways could be used to stay within the emissions limits (engine internal and aftertreatment measures), DeNOX-aftertreatment systems will be mandatory to reach future limits. In these kinds of applications fuel consumption of the engines is a very decisive selling argument for customers. Total cost of ownership needs to be as low as possible. The trade-off between fuel consumption and NOX emissions forces manufacturers to find an optimal solution, especially with regard to increasing fuel prices. In state-of-the-art calibration processes the aftertreatment system is considered separately from the calibration of the thermodynamics.
Technical Paper

Exhaust Temperature Management for Diesel Engines Assessment of Engine Concepts and Calibration Strategies with Regard to Fuel Penalty

2011-09-11
2011-24-0176
Both, the continuous strengthening of the exhaust emission legislation and the striving for a substantial reduction of carbon dioxide output in the traffic sector depict substantial requirements for the development of future diesel engines. These engines will comprise not only the mandatory diesel oxidation catalyst (DOC) and particulate filter DPF but a NOx aftertreatment system as well - at least for heavier vehicles. The oxidation catalysts as well as currently available NOx aftertreatment technologies, i.e., LNT and SCR, rely on sufficient exhaust gas temperatures to achieve a proper conversion. This is getting more and more critical due to the fact that today's and future measures for CO₂ reduction will result in further decrease of engine-out temperatures. Additionally this development has to be considered in the light of further engine electrification and hybridization scenarios.
Technical Paper

Closed Loop Combustion Control - Enabler of Future Refined Engine Performance Regarding Power, Efficiency, Emissions & NVH under Stringent Governmental Regulations

2011-09-11
2011-24-0171
Both, the continuous strengthening of the exhaust emission legislation and the striving for a substantial reduction of the carbon dioxide output in the traffic sector depict substantial requirements for the global automotive industry and especially for the engine manufacturers. From the multiplicity of possible approaches and strategies for clear compliance with these demands, engine internal measures offer a large and, eventually more important, very economical potential. For example, the achievements in fuel injection technology are a measure which in the last years has contributed significantly to a notable reduction of the emissions of the modern DI Diesel engines at favorable fuel efficiency. Besides the application of modern fuel injection technology, the linked combustion control (Closed Loop Combustion Control) opens possibilities for a further optimization of the combustion process.
Technical Paper

Turbocharging of Downsized Gasoline DI Engines with 2 and 3 Cylinders

2011-09-11
2011-24-0138
Turbocharged DISI engines with four cylinders have established in the market and provide a performance comparable to larger six-cylinder engines in the smaller compartment of a four-cylinder engine. In the Japanese market, also turbo gasoline engines with 500 - 660 cm₃ displacement have a long tradition in Kei-Cars. However, those engines show a lower specific performance as would be required for propelling typical small or compact vehicles in Europe. Recently, two-cylinder turbo engines have come to market, which are found attractive with respect to sound, package, and also enable low vehicle fuel consumption in NEDC test. The paper presents a turbocharger layout study on 2- and 3-cylinder engines. It discusses the influence of cylinder displacement volume on the sizing of turbines and compressors, and how specific flow phenomena in the turbine can be captured in the simulation model.
Journal Article

Analysis of the Effect of Bio-Fuels on the Combustion in a Downsized DI SI Engine

2011-08-30
2011-01-1991
In this study the fuel influence of several bio-fuel candidates on homogeneous engine combustion systems with direct injection is investigated. The results reveal Ethanol and 2-Butanol as the two most knock-resistant fuels. Hence these two fuels enable the highest efficiency improvements versus RON95 fuel ranging from 3.6% - 12.7% for Ethanol as a result of a compression ratio increase of 5 units. Tetrahydro-2-methylfuran has a worse knock resistance and a decreased thermal efficiency due to the required reduction in compression ratio by 1.5 units. The enleanment capability is similar among all fuels thus they pose no improvements for homogeneous lean burn combustion systems despite a significant reduction in NOX emissions for the alcohol fuels as a consequence of lower combustion temperatures.
Technical Paper

Shape Optimization of a Single Cylinder Engine Crankshaft

2011-04-12
2011-01-1077
Due to increasing demand for environment friendly vehicles with better fuel economy and strict legislations on greenhouse gas emissions, lightweight design has become one of the most important issues concerning the automobile industry. Within the scope of this work lightweight design potentials that a conventional single cylinder engine crankshaft offers are researched through utilization of structural optimization techniques. The objective of the study is to reduce mass and moment of inertia of the crankshaft with the least possible effect on the stiffness and strength. For precise definition of boundary conditions and loading scenarios multi body simulations are integrated into the optimization process. The loading conditions are updated at the beginning of each optimization loop, in which a multi body simulation of the output structure from the previous optimization loop is carried out.
Technical Paper

Effect of Intake Port Design on the Flow Field Stability of a Gasoline DI Engine

2011-04-12
2011-01-1284
The application of technologies such as direct injection, turbo charging and variable valve timing has caused a significant evolution of the gasoline engine with positive effects on fuel consumption and emissions. The current developments are primarily focused on the realization of improved full load characteristics and fuel consumption reduction with stoichiometric operation, following the downsizing approach in combination with turbo charging and high specific power. The requirements of high specific power in a relatively small cylinder displacement and a wide range of DI injection specifications lead to competing development targets and to a high number of degrees of freedom during engine layout and optimization. One of the major targets is to assess the stability of the combustion system in the early development phase.
Technical Paper

Glow-plug Ignition of Ethanol Fuels under Diesel Engine Relevant Thermodynamic Conditions

2011-04-12
2011-01-1391
The requirement of reducing worldwide CO₂ emissions and engine pollutants are demanding an increased use of bio-fuels. Ethanol with its established production technology can contribute to this goal. However, due to its resistive auto-ignition behavior the use of ethanol-based fuels is limited to the spark-ignited gasoline combustion process. For application to the compression-ignited diesel combustion process advanced ignition systems are required. In general, ethanol offers a significant potential to improve the soot emission behavior of the diesel engine due to its oxygen content and its enhanced evaporation behavior. In this contribution the ignition behavior of ethanol and mixtures with high ethanol content is investigated in combination with advanced ignition systems with ceramic glow-plugs under diesel engine relevant thermodynamic conditions in a high pressure and temperature vessel.
Technical Paper

Interpretation Tools and Concepts for the Heat Management in the Drive Train of the Future

2011-04-12
2011-01-0650
Thermal management describes measures that result in the improved engine or vehicle operation in terms of energetics and thermo mechanics. In this context the involvement of the entire power train becomes more important as the interaction between engine, transmission and temperature sensitive battery package (of hybrid vehicles or electric vehicles with range extender) or the utilization of exhaust gas thermal energy play a major role for future power train concepts. The aim of thermal management strategies is to reduce fuel consumption while simultaneously increasing the comfort under consideration of all temperature limits. In this case it is essential to actively control the heat flow, in order to attain the optimal temperature distribution in the power train components.
Technical Paper

The Impact of Different Biofuel Components in Diesel Blends on Engine Efficiency and Emission Performance

2010-10-25
2010-01-2119
Within the Cluster of Excellence “Tailor-Made Fuels from Biomass” at RWTH Aachen University, the Institute for Combustion Engines carried out an investigation program to explore the potential of future biofuel components in Diesel blends. In this paper, thermodynamic single cylinder engine results of today's and future biofuel components are presented with respect to their engine-out emissions and engine efficiency. The investigations were divided into two phases: In the first phase, investigations were performed with rapeseed oil methyl ester (B100) and an Ethanol-Gasoline blend (E85). In order to analyze the impact of different fuel blends, mixtures with 10 vol-% of B100 or E85 and 90 vol-% of standardized EN590 Diesel were investigated. Due to the low cetane number of E85, it cannot be used purely in a Diesel engine.
Journal Article

Dedicated GTL Vehicle: A Calibration Optimization Study

2010-04-12
2010-01-0737
GTL (Gas-To-Liquid) fuel is well known to improve tailpipe emissions when fuelling a conventional diesel vehicle, that is, one optimized to conventional fuel. This investigation assesses the additional potential for GTL fuel in a GTL-dedicated vehicle. This potential for GTL fuel was quantified in an EU 4 6-cylinder serial production engine. In the first stage, a comparison of engine performance was made of GTL fuel against conventional diesel, using identical engine calibrations. Next, adaptations enabled the full potential of GTL fuel within a dedicated calibration to be assessed. For this stage, two optimization goals were investigated: - Minimization of NOx emissions and - Minimization of fuel consumption. For each optimization the boundary condition was that emissions should be within the EU5 level. An additional constraint on the latter strategy required noise levels to remain within the baseline reference.
Journal Article

Influence of the Mixture Formation on the Lubrication Oil Emission of Combustion Engines

2010-04-12
2010-01-1275
Partly competing objectives, as low fuel consumption, low friction, long oil maintenance rate, and at the same time lowest exhaust emissions have to be fulfilled. Diminishing resources, continuously reduced development periods, and shortened product cycles yield detailed knowledge about oil consumption mechanisms in combustion engines to be essential. There are different ways for the lubricating oil to enter the combustion chamber: for example as blow-by gas, leakage past valve stem seals, piston rings (reverse blow-by) and evaporation from the cylinder liner wall and the combustion chamber. For a further reduction of oil consumption the investigation of these mechanisms has become more and more important. In this paper the influence of the mixture formation and the resulting fuel content in the cylinder liner wall film on the lubricant oil emission was examined.
Technical Paper

Impact of Fuel Properties on Advanced Combustion Performance in a Diesel Bench Engine and Demonstrator Vehicle

2010-04-12
2010-01-0334
Six diesel, kerosene, gasoline-like, and naphtha fuels have been tested in a single cylinder diesel engine and a demonstrator vehicle, both equipped with similar engine technology and optimized for advanced combustion performance. This study was completed in order to investigate the potential to reduce engine-out emissions while maintaining engine efficiency and noise levels through changes in both engine hardware and fuel properties. The fuels investigated in this study were selected in order to better understand the effects of ignition quality, volatility, and molecular composition on engine-out emissions and performance. The optimized bench engine used in this study included engine hardware enhancements that are likely to be used to meet Euro 6 emissions limits and beyond, in part by operating under advanced combustion conditions, at least under some speed and load conditions.
Technical Paper

A New Approach for Optimization of Mixture Formation on Gasoline DI Engines

2010-04-12
2010-01-0591
Advanced technologies such as direct injection DI, turbocharging and variable valve timing, have lead to a significant evolution of the gasoline engine with positive effects on driving pleasure, fuel consumption and emissions. Today's developments are primarily focused on the implementation of improved full load characteristics for driving performance and fuel consumption reduction with stoichiometric operation, following the downsizing approach in combination with turbocharging and high specific power. The requirements of a relatively small cylinder displacement with high specific power and a wide flexibility of DI injection specifications lead to competing development targets and additionally to a high number of degrees of freedom during optimization. In order to successfully approach an optimum solution, FEV has evolved an advanced development methodology, which is based on the combination of simulation, optical diagnostics and engine thermodynamics testing.
Technical Paper

Tailor-Made Fuels: The Potential of Oxygen Content in Fuels for Advanced Diesel Combustion Systems

2009-11-02
2009-01-2765
Fuels derived from biomass will most likely contain oxygen due to the high amount of hydrogen needed to remove oxygen in the production process. Today, alcohol fuels (e. g. ethanol) are well understood for spark ignition engines. The Institute for Combustion Engines at RWTH Aachen University carried out a fuel investigation program to explore the potential of alcohol fuels as candidates for future compression ignition engines to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. The soot formation and oxidation process when using alcohol fuels in diesel engines is not yet sufficiently understood. Depending on the chain length, alcohol fuels vary in cetane number and boiling temperature. Decanol possesses a diesel-like cetane number and a boiling point in the range of the diesel boiling curve. Thus, decanol was selected as an alcohol representative to investigate the influence of the oxygen content of an alcohol on the combustion performance.
Technical Paper

Tailor-Made Fuels for Future Advanced Diesel Combustion Engines

2009-06-15
2009-01-1811
The finite nature and instability of fossil fuel supply has led to an increasing and enduring investigation demand of alternative and regenerative fuels. The Institute for Combustion Engines at the RWTH Aachen University carried out an investigation program to explore the potential of tailor made fuels to reduce engine-out emissions while maintaining engine efficiency and an acceptable noise level. To enable optimum engine performance a range of different hydrocarbons having different fuel properties like cetane number, boiling temperature and different molecular compositions have been investigated. Paraffines and naphthenes were selected in order to better understand the effects of molecular composition and chain length on emissions and performance of an engine that was already optimized for advanced combustion performance. The diesel single-cylinder research engine used in this study will be used to meet Euro 6 emissions limits and beyond.
Journal Article

Operation Strategies for Controlled Auto Ignition Gasoline Engines

2009-04-20
2009-01-0300
Controlled Auto Ignition combustion systems have a high potential for fuel consumption and emissions reduction for gasoline engines in part load operation. Controlled auto ignition is initiated by reaching thermal ignition conditions at the end of compression. Combustion of the CAI process is controlled essentially by chemical kinetics, and thus differs significantly from conventional premixed combustion. Consequently, the CAI combustion process is determined by the thermodynamic state, and can be controlled by a high amount of residual gas and stratification of air, residual gas and fuel. In this paper both fundamental and application relevant aspects are investigated in a combined approach. Fundamental knowledge about the auto-ignition process and its dependency on engine operating conditions are required to efficiently develop an application strategy for CAI combustion.
Technical Paper

Fuel Property Effects on Emissions and Performance of a Light-Duty Diesel Engine

2009-04-20
2009-01-0488
Increased demand for highly fuel efficient propulsion systems drives the engine development community to develop advanced technologies allowing improving the overall thermal efficiency while maintaining low emission levels. In addition to improving the thermal efficiencies of the internal combustion engine itself the developments of fuels that allow improved combustion as well as lower the emissions footprint has intensified recently. This paper will describe the effects of five different fuel types with significantly differing fuel properties on a state-of-the-art light-duty HSDI diesel engine. The fuels cetane number ranges between 26 and 76. These fuels feature significantly differing boiling characteristics as well as heating values. The fuel selection also contains one pure biodiesel (SME - Soy Methyl Ester). This study was conducted in part load and full load operating points using a state of the art HSDI diesel engine.
X