Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Advanced Spacesuit Avionics Subsystem Integration Testing

2014-09-16
2014-01-2150
This paper summarizes the Power, Avionics and Software (PAS) 1.0 subsystem integration testing and test results that occurred in August and September of 2013. This paper covers the capabilities of each PAS assembly to meet integration test objectives for non-safety critical, non-flight, non-human-rated hardware and software development. This test report is the outcome of the first integration of the PAS subsystem and is meant to provide data for subsequent designs, development and testing of the future PAS subsystems. The two main objectives were to assess the ability of the PAS assemblies' to exchange messages and to perform audio tests of both inbound and outbound channels. This paper describes each test performed, defines the test, the data, and provides conclusions and recommendations.
Technical Paper

Fundamental Ice Crystal Accretion Physics Studies

2011-06-13
2011-38-0018
Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice-crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations.
Technical Paper

The ISS Water Processor Catalytic Reactor as a Post Processor for Advanced Water Reclamation Systems

2007-07-09
2007-01-3038
Advanced water processors being developed for NASA's Exploration Initiative rely on phase change technologies and/or biological processes as the primary means of water reclamation. As a result of the phase change, volatile compounds will also be transported into the distillate product stream. The catalytic reactor assembly used in the International Space Station (ISS) water processor assembly, referred to as Volatile Removal Assembly (VRA), has demonstrated high efficiency oxidation of many of these volatile contaminants, such as low molecular weight alcohols and acetic acid, and is considered a viable post treatment system for all advanced water processors. To support this investigation, two ersatz solutions were defined to be used for further evaluation of the VRA. The first solution was developed as part of an internal research and development project at Hamilton Sundstrand (HS), and is based primarily on ISS experience related to the development of the VRA.
Technical Paper

Toward Human-Robot Interface Standards: Use of Standardization and Intelligent Subsystems for Advancing Human-Robotic Competency in Space Exploration

2006-07-17
2006-01-2019
NASA's plans to implement the Vision for Space Exploration include extensive human-robot cooperation across an enterprise spanning multiple missions, systems, and decades. To make this practical, strong enterprise-level interface standards (data, power, communication, interaction, autonomy, and physical) will be required early in the systems and technology development cycle. Such standards should affect both the engineer and operator roles that humans adopt in their interactions with robots. For the engineer role, standards will result in reduced development lead-times, lower cost, and greater efficiency in deploying such systems. For the operator role, standards will result in common autonomy and interaction modes that reduce operator training, minimize workload, and apply to many different robotic platforms. Reduced quantities of spare hardware could also be a benefit of standardization.
Technical Paper

International Space Station U.S. Laboratory Outfitting, Part 2

1996-07-01
961342
This paper describes the current USL outfitting with design and development changes incorporated during the past year. The International Space Station (ISS) USL is outfitted with eleven systems racks, an optical quality nadir window for earth viewing experiments and accommodations for thirteen International Standard Payload Racks (ISPRs). International payloads utilize this outfitting in a “shirt sleeve” environment by sharing allocated system resources and flight crew time to perform long term microgravity experiments. Recent changes in Command and Data Handling, 120 Vdc power, liquid and air cooling, audio and video communication, space vacuum and microgravity systems resources are included. User interfaces, systems performance and environmental conditions, in addition to the ISS USL outfitting configuration, are also updated in this ICES paper.
Technical Paper

International Space Station U.S. Laboratory Outfitting, Part 1

1995-07-01
951597
This paper describes the current United States Laboratory (USL) outfitting following the transition from Space Station Freedom to International Space Station (ISS). The ISS USL is outfitted with eleven systems racks, an optical quality nadir window for earth viewing experiments and accommodations for thirteen International Standard Payload Racks (ISPRs). The international payloads utilize this outfitting in a “shirt sleeve” environment by sharing allocated system resources and flight crew time to perform long term microgravity experiments. These systems resources include Command and Data Handling, 120 Vdc power, liquid and air cooling, audio and video communication, space vacuum and location dependent levels of microgravity. The ISS USL outfitting configuration, user interfaces, systems performance and environmental conditions are included in this ICES paper.
Technical Paper

NASA's Advanced Life Support Technology Program

1994-06-01
941290
For reasons of safety as well as cost, increasingly lengthy space missions at unprecedented distances from Earth in the 21st century will require reductions in consumables and increases in the autonomy of spacecraft life support systems. Advanced life support technologies can increase mission productivity and enhance science yield by achieving reductions in the mass, volume, and power required to support human needs for long periods of time in sterile and hostile environments. Current investment in developing advanced life support systems for orbital research facilities will increase the productivity of these relatively near-term missions, while contributing to the technology base necessary for future human exploration missions.
Technical Paper

Power System Monitoring and Source Control of the Space Station Freedom DC-Power System Testbed

1992-08-03
929300
Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the DC Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation.
Technical Paper

The Past as Prologue: A Look at Historical Flight Qualifications for Space Nuclear Systems

1992-08-03
929342
Currently the U.S. is sponsoring production of radioisotope thermoelectric generators (RTGs) for the Cassini mission to Saturn; the SP-100 space nuclear reactor power system for NASA applications; a thermionic space reactor program for DoD applications as well as early work on nuclear propulsion. In an era of heightened public concern about having successful space ventures it is important that a full understanding be developed of what it means to “flight qualify” a space nuclear system. As a contribution to the ongoing work this paper reviews several qualification programs, including the general-purpose heat source radioisotope thermoelectric generators (GPHS-RTGs) as developed for the Galileo and Ulysses missions, the SNAP-10A space reactor, the Nuclear Engine for Rocket Vehicle Applications (NERVA), the F-1 chemical engine used on the Saturn-V, and the Space Shuttle Main Engines (SSMEs). Similarities and contrasts are noted.
X