Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Approaches to Solve Problems of the Premixed Lean Diesel Combustion

1999-03-01
1999-01-0183
Previous research in our laboratory has shown that NOx emissions can be sharply reduced by PREDIC (PRE-mixed lean DIesel Combustion), in which fuel is injected very early in the compression process. However some points of concern remained unsolved, such as a large increase in THC and CO, higher fuel consumption, and an operating region narrowly limited to partial loads, compared to conventional diesel operation. In this paper, the causes of PREDIC's problem areas were analyzed through engine performance tests and combustion observation with a single cylinder engine, through fuel spray observation with a high-pressure vessel, and through numerical modeling. Subsequently, measurable improvements were achieved on the basis of these analyses. As a result, the ignition and combustion processes were clarified in terms of PREDIC fuel-air mixture formation. Thus, THC and CO emissions could be decreased by adopting a pintle type injection nozzle, or a reduced top-land-crevice piston.
Technical Paper

Combustion and Emission Characteristics of Multiple Stage Diesel Combustion

1998-02-23
980505
A new diesel combustion concept termed MULDIC (MUL-tiple stage DIesel Combustion), which can reduce NOx emissions at high load conditions, was studied by means of engine tests, combustion observation, and numerical simulation. In MULDIC, the first stage combustion corresponds to premixed lean combustion, and the second stage combustion corresponds to diffusion combustion under high temperature and low oxygen conditions. The engine tests showed that simultaneous reduction of NOx and smoke could be obtained with MULDIC operation, even at an excess air ratio of 1.4. Fuel consumption was higher compared to conventional operation because of premature ignition of the first stage combustion and extremely late second stage injection. However, optimization of the first stage combustion increased the degree of constant volume combustion, and hence the thermal efficiency was increased.
X