Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Turbocharging system selection for a hydrogen-fuelled spark-ignition internal combustion engine for heavy-duty applications

2024-07-02
2024-01-3019
Nowadays, green hydrogen can play a crucial role in a successful clean energy transition, thus reaching net zero emissions in the transport sector. Moreover, hydrogen exploitation in internal combustion engines is favoured by its suitable combustion properties and quasi-zero harmful emissions. High flame speeds enable a lean combustion approach, which provides high efficiency and reduces NOx emissions. However, high air flow rates are required to achieve the load levels typical of heavy-duty applications. In this framework, the present study aims to investigate the required boosting system of a 6-cylinder, 13-liter heavy-duty spark ignition engine through 1D numerical simulation. A comparison among various architectures of the turbocharging system and the size of each component is presented, thus highlighting limitations and potentialities of each architecture and providing important insights for the selection of the best turbocharging system.
Technical Paper

How Can a Sustainable Energy Infrastructure based on Renewable Fuels Contribute to Global Carbon Neutrality?

2024-07-02
2024-01-3023
Abstract. With the COP28 decisions the world is thriving for a future net-zero-CO2 society and the and current regulation acts, the energy infrastructure is changing in direction of renewables in energy production. All industry sectors will extend their share of direct or indirect electrification. The question might arise if the build-up of the renewables in energy production is fast enough. Demand and supply might not match in the short- and mid-term. The paper will discuss the roadmaps, directions and legislative boundary parameter in the regenerative energy landscape and their regional differences. National funding on renewables will gain an increasing importance to accelerate the energy transformation. The are often competing in attracting the same know-how on a global scale. In addition the paper includes details about energy conversion, efficiency as well as potential transport scenarios from production to the end consumer.
Technical Paper

Development of a Soft-Actor Critic Reinforcement Learning Algorithm for the Energy Management of a Hybrid Electric Vehicle

2024-06-12
2024-37-0011
In recent years, the urgent need to fully exploit the fuel economy potential of the Electrified Vehicles (xEVs) through the optimal design of their Energy Management System (EMS) have led to an increasing interest in Machine Learning (ML) techniques. Among them, Reinforcement Learning (RL) seems to be one of the most promising approaches thanks to its peculiar structure, in which an agent is able to learn the optimal control strategy through the feedback received by a direct interaction with the environment. Therefore, in this study, a new Soft Actor-Critic agent (SAC), which exploits a stochastic policy, was implemented on a digital twin of a state-of-the-art diesel Plug-in Hybrid Electric Vehicle (PHEV) available on the European market. The SAC agent was trained to enhance the fuel economy of the PHEV while guaranteeing its battery charge sustainability.
Technical Paper

Optimizing Urban Traffic Efficiency via Virtual Eco-Driving Featured by a Single Automated Vehicle

2024-04-09
2024-01-2082
In the face of growing concerns about environmental sustainability and urban congestion, the integration of eco-driving strategies has emerged as a pivotal solution in the field of the urban transportation sector. This study explores the potential benefits of a CAV functioning as a virtual eco-driving controller in an urban traffic scenario with a group of following human-driven vehicles. A computationally inexpensive and realistic powertrain model and energy management system of the Chrysler Pacifica PHEV are developed with the field experiment data and integrated into a forward-looking vehicle simulator to implement and validate an eco-driving speed planning and energy management strategy assuming longitudinal automation. The eco-driving algorithm determines the optimal vehicle speed profile and energy management strategy.
Technical Paper

Enhancing Ducted Fuel Injection Simulations: Assessment of RANS Turbulence Models Using LES Data

2024-04-09
2024-01-2689
Compression ignition engine-based transportation is nowadays looking for cleaner combustion solutions. Among them, ducted fuel injection (DFI) is emerging as a cutting-edge technology due to its potential to drastically curtail engine-out soot emissions. Although the DFI capability to abate soot formation has been demonstrated both in constant-volume and optical engine conditions, its optimization and understanding is still needed for its exploitation on series production engines. For this purpose, computational fluid dynamics (CFD) coupled with low-cost turbulence models, like RANS, can be a powerful tool, especially in the industrial context. However, it is often challenging to obtain reliable RANS-based CFD simulations, especially due to the high dependence of the various state-of-the-art turbulence models on the case study.
Technical Paper

Industrialization of the Commercial Hydrogen Engine till 2025

2024-01-16
2024-26-0167
India striving for carbon neutrality influences futures powertrain architecture of commercial vehicles. The use of CO2-free drives as battery electric have been demonstrated for various applications. The productivity still is a challenge due to missing high power charging infrastructure or limited range. This draws the attention to the use of sustainable fuels due to lower refueling times. The hydrogen engine got highest attention in the last couple of years. For markets as the EU the driver for hydrogen is the CO2 emission reduction, whereas for markets as India hydrogen offers the additional opportunity for more independence from fossil imports. Different OEMs all over the world have converted diesel engines to hydrogen operation with strong focus on performance and emission demonstration, so far with limited technology readiness of different key components.
Technical Paper

Combustion and Emission Characteristics of Ammonia Jet Flames, Based on a Controllable Activated Thermal Atmosphere

2023-10-31
2023-01-1645
Ammonia is a new type of carbon-free fuel with low cost, clean and safe. The research and application of zero-carbon fuel internal combustion engines has become the mainstream of future development. However, there still exist problems should be solved in the application of ammonia fuel. Due to the lower flame laminar speed and higher ignition temperature, ammonia may have unstable combustion phenomena. In this work, the characteristics of ammonia combustion have been investigated, based on controllable thermal activated atmosphere burner. The ignition delay has been used to analyze the ammonia combustion characteristics. With the increase in co-flow temperature, the ignition delay of ammonia/air has an obvious decline. In order to investigate the emission characteristics of ammonia, CHEMKIN is used to validate the different chemical reaction mechanisms and analyse the ammonia emissions.
Technical Paper

Artificial Neural Network-Based Emission Control for Future ICE Concepts

2023-10-31
2023-01-1605
The internal combustion engine contains several actuators to control engine performance and emissions. These are controlled within the engine ECU and follow a specific operating strategy to achieve objectives such as NOx reduction and fuel economy. However, these two goals are conflicting and a compromise is required. The operating state depends on system constraints such as engine speed, load, temperature levels, and aftertreatment system efficiency. This results in constantly changing target values to stay within the defined limits, especially the legal emission limits. The conventional approach is to use multiple operating modes. Each mode represents a specific compromise and is activated accordingly. Multiple modes are required to meet emissions regulations under all required conditions, which increases the calibration effort. This new control approach uses an artificial neural network to replace the conventional multiple mode approach.
Technical Paper

Improving Computational Efficiency for Energy Management Systems in Plug-in Hybrid Electric Vehicles Using Dynamic Programming based Controllers

2023-08-28
2023-24-0140
Reducing computational time has become a critical issue in recent years, particularly in the transportation field, where the complexity of scenarios demands lightweight controllers to run large simulations and gather results to study different behaviors. This study proposes two novel formulations of the Optimal Control Problem (OCP) for the Energy Management System of a Plug-in Hybrid Electric Vehicle (PHEV) and compares their performance with a benchmark found in the literature. Dynamic Programming was chosen as the optimization algorithm to solve the OCP in a Matlab environment, using the DynaProg toolbox. The objective is to address the optimality of the fuel economy solution and computational time. In order to improve the computational efficiency of the algorithm, an existing formulation from the literature was modified, which originally utilized three control inputs.
Technical Paper

Numerical Assessment of Port Water Injection Capabilities to Reduce CO2 Emissions of a Lambda 1 Turbocharged Spark Ignition Engine

2023-04-11
2023-01-0181
The continuous tightening of CO2 emission targets along with the introduction of Real Driving Emissions (RDE) tests make Water Injection (WI) one of the most promising solutions to improve efficiency, enhance performance and reduce emissions of turbocharged high-performance Spark Ignition engines. This technology, by reducing local in-cylinder mixture temperature, enables higher compression ratios, optimal spark timing and stoichiometric combustion over the entire engine operating range. This research activity, therefore, aims to assess the benefits in terms of CO2 emission reduction of a Port Water Injection (PWI) system integrated in a Downsized Turbocharged Direct Injection Spark Ignition (T-DISI) Engine. In this regard, a 1D-CFD model of the engine capable to predict the impact of the water content on both the combustion process and the knock likelihood was firstly developed.
Technical Paper

A Synergic Use of Innovative Technologies for the Next Generation of High Efficiency Internal Combustion Engines for PHEVs: The PHOENICE Project

2023-04-11
2023-01-0224
Despite the legislation targets set by several governments of a full electrification of new light-duty vehicle fleets by 2035, the development of innovative, environmental-friendly Internal Combustion Engines (ICEs) is still crucial to be on track toward the complete decarbonization of on road-mobility of the future. In such a framework, the PHOENICE (PHev towards zerO EmissioNs & ultimate ICE efficiency) project aims at developing a C SUV-class plug-in hybrid (P0/P4) vehicle demonstrator capable to achieve a -10% fuel consumption reduction with respect to current EU6 vehicle while complying with upcoming EU7 pollutant emissions limits. Such ambitious targets will require the optimization of the whole engine system, exploiting the possible synergies among the combustion, the aftertreatment and the exhaust waste heat recovery systems.
Book

Injection Technologies and Mixture Formation Strategies For Spark-Ignition and Dual-Fuel Engines

2022-06-24
Fuel injection systems and performance is fundamental to combustion engine performance in terms of power, noise, efficiency, and exhaust emissions. There is a move toward electric vehicles (EVs) to reduce carbon emissions, but this is unlikely to be a rapid transition, in part due to EV batteries: their size, cost, longevity, and charging capabilities as well as the scarcity of materials to produce them. Until these issues are resolved, refining the spark-ignited engine is necessary to address both sustainability and demand for affordable and reliable mobility. Even under policies oriented to smart sustainable mobility, spark-ignited engines remain strategic, because they can be applied to hybridized EVs or can be fueled with gasoline blended with bioethanol or bio-butanol to drastically reduce particulate matter emissions of direct injection engines in addition to lower CO2 emissions.
Journal Article

Calibrating a Real-time Energy Management for a Heavy-Duty Fuel Cell Electrified Truck towards Improved Hydrogen Economy

2022-06-14
2022-37-0014
Fuel cell electrified powertrains are currently a promising technology towards decarbonizing the heavy-duty transportation sector. In this context, extensive research is required to thoroughly assess the hydrogen economy potential of fuel cell heavy-duty electrification. This paper proposes a real-time capable energy management strategy (EMS) that can achieve improved hydrogen economy for a fuel cell electrified heavy-duty truck. The considered heavy-duty truck is modelled first in Simulink® environment. A baseline heuristic map-based controller is then retained that can instantaneously control the electrical power split between fuel cell system and the high-voltage battery pack of the heavy-duty truck. Particle swarm optimization (PSO) is consequently implemented to optimally tune the parameters of the considered EMS.
Technical Paper

Adaptive Real-Time Energy Management of a Multi-Mode Hybrid Electric Powertrain

2022-03-29
2022-01-0676
Meticulous design of the energy management control algorithm is required to exploit all fuel-saving potentials of a hybrid electric vehicle. Equivalent consumption minimization strategy is a well-known representative of on-line strategies that can give near-optimal solutions without knowing the future driving tasks. In this context, this paper aims to propose an adaptive real-time equivalent consumption minimization strategy for a multi-mode hybrid electric powertrain. With the help of road recognition and vehicle speed prediction techniques, future driving conditions can be predicted over a certain horizon. Based on the predicted power demand, the optimal equivalence factor is calculated in advance by using bisection method and implemented for the upcoming driving period. In such a way, the equivalence factor is updated periodically to achieve charge sustaining operation and optimality.
Technical Paper

A Computationally Lightweight Dynamic Programming Formulation for Hybrid Electric Vehicles

2022-03-29
2022-01-0671
Predicting the fuel economy capability of hybrid electric vehicle (HEV) powertrains by solving the related optimal control problem has been available for a few decades. Dynamic programming (DP) is one of the most popular techniques implemented to this end. Current research aims at integrating further powertrain modeling criteria that improve the fidelity level of the optimal HEV powertrain control behavior predicted by DP, thus corroborating the reliability of the fuel economy assessment. Dedicated methodologies need further development to avoid the curse of dimensionality which is typically associated to DP when increasing the number of control and state variables considered. This paper aims at considerably reducing the overall computational effort required by DP for HEVs by removing the state term associated to the battery state-of-charge (SOC).
Journal Article

Measurement of Piston Friction with a Floating Liner Engine for Heavy-Duty Applications

2022-03-29
2022-01-0601
The further increase in the efficiency of heavy-duty engines is essential in order to reduce CO2 emissions in the transport sector. This is also valid for the future use of alternative fuels, which can be CO2-neutral, but can cause higher total costs of ownership due to higher prices and limited availability. In addition to thermodynamic optimization, the reduction of mechanical losses is of great importance. In particular, there is a high potential in the piston bore interface, since continuously increasing cylinder pressures have a strong influence on the frictional and lateral piston forces. To meet these future challenges of increasing heavy-duty engine efficiency, AVL has developed a floating liner engine for heavy-duty applications based on its tried and tested passenger car floating liner concept.
Technical Paper

Modular Transmission Family for Fuel Consumption Reduction Tailored for Indian Market Needs

2021-09-22
2021-26-0049
Global warming is the driver for introduction of CO2 and fuel consumption legislation worldwide. Indian truck manufacturers are facing the introduction of Indian fuel efficiency norms. In the European Union the CO2 emission monitoring phase of the most relevant truck classes was completed in June 2020 by usage of the Vehicle Energy Consumption Calculation TOol VECTO. Indian rule makers are currently considering an adaptation of VECTO for the usage in India, too. Indian truck market has always been very cost sensitive. Introduction of Bharat Stage VI Phase I has already led to a significant cost increase for emission compliance. Therefore, it will be of vital importance to keep the additional product costs for achievement of future fuel consumption legislation as low as possible as long as the real-world operation will not be promoted by the government.
Technical Paper

Hybrid-Powertrain Development Approach to Reduce Number of Prototype Vehicles by Taking Right Decision in Early Development Phases on Engine Testbeds

2021-09-22
2021-26-0449
Today’s automotive industry is changing rapidly towards environmentally friendly vehicle propulsion systems. All over the globe, legislative CO2 consumption targets are under discussion and partly already in force. Hybrid powertrain configurations are capable to lower fuel consumption and limit pollutant emissions compared to pure IC-Engine driven powertrains. Depending on boundary conditions a numerous of different hybrid topologies- and its control strategies are thinkable. Typical approach is to find the optimum hybrid layout and strategy, by performing certain technical design tasks in office simulation directly followed by vehicle prototype tests on the chassis dyno and road. This leads to a high number of prototype vehicles, overload on chassis dynos, time consuming road test and finally to tremendous costs. Our developed approach is using the engine testbed with simulation capabilities as bridging element between office and vehicle development environment.
Technical Paper

An Engine Parameters Sensitivity Analysis on Ducted Fuel Injection in Constant-Volume Vessel Using Numerical Modeling

2021-09-05
2021-24-0015
The use of Ducted Fuel Injection (DFI) for attenuating soot formation throughout mixing-controlled diesel combustion has been demonstrated impressively effective both experimentally and numerically. However, the last research studies have highlighted the need for tailored engine calibration and duct geometry optimization for the full exploitation of the technology potential. Nevertheless, the research gap on the response of DFI combustion to the main engine operating parameters has still to be fully covered. Previous research analysis has been focused on numerical soot-targeted duct geometry optimization in constant-volume vessel conditions. Starting from the optimized duct design, the herein study aims to analyze the influence of several engine operating parameters (i.e. rail pressure, air density, oxygen concentration) on DFI combustion, having free spray results as a reference.
Technical Paper

Catalytic Oxidation of Soot and Volatile Organic Compounds over Cu and Fe Doped Manganese Oxides Prepared via Sol-Gel Synthesis

2021-09-05
2021-24-0088
A set of manganese oxide catalysts was synthesized and doped with Cu and/or Fe by means of the citric acid sol-gel preparation method. The samples were studied by means of several characterization techniques: field-emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), N2-physisorption at -196 °C, H2 and soot temperature-programmed reduction (H2-TPR, soot-TPR) and X-ray photoelectron spectroscopy (XPS). The catalytic performance of the prepared catalysts was investigated in the oxidation of a probe VOC molecule (propylene) and carbon soot singularly and simultaneously. The catalytic performances were studied as well assuring a content of 5 vol.% of water in the gaseous reactive mix. The investigations evidenced that the best soot catalytic oxidation rates occurred over the Mn2O3 sample, while the copper-doped manganese oxide (i.e. the MnCu15) showed the best performance in the decomposition of propylene.
X