Refine Your Search

Topic

Author

Search Results

Technical Paper

Current and Torque Harmonics Analysis of Triple Three-Phase Permanent-Magnet Synchronous Machines with Arbitrary Phase Shift Based on Model-in-the-Loop

2024-07-02
2024-01-3025
Multiple three-phase machines have become popular in recent due to their reliability, especially in the ship and airplane propulsions. These systems benefit greatly from the robustness and efficiency provided by such machines. However, a notable challenge presented by these machines is the growth of harmonics with an increase in the number of phases, affecting control precision and inducing torque oscillations. The phase shift angles between winding sets are one of the most important causes of harmonics in the stator currents and machine torque. Traditional approaches in the study of triple-three-phase or nine-phase machines mostly focus on specific phase shift, lacking a comprehensive analysis across a range of phase shifts. This paper discusses the current and torque harmonics of triple-three-phase permanent magnet synchronous machines (PMSM) with different phase shifts. It aims to analyze and compare the impacts of different phase shifts on harmonic levels.
Technical Paper

Neural Network Modeling of Black Box Controls for Internal Combustion Engine Calibration

2024-07-02
2024-01-2995
The calibration of Engine Control Units (ECUs) for road vehicles is challenged by stringent legal and environmental regulations, coupled with short development cycles. The growing number of vehicle variants, although sharing similar engines and control algorithms, requires different calibrations. Additionally, modern engines feature increasingly number of adjustment variables, along with complex parallel and nested conditions within the software, demanding a significant amount of measurement data during development. The current state-of-the-art (White Box) model-based ECU calibration proves effective but involves considerable effort for model construction and validation. This is often hindered by limited function documentation, available measurements, and hardware representation capabilities. This article introduces a model-based calibration approach using Neural Networks (Black Box) for two distinct ECU functional structures with minimal software documentation.
Technical Paper

Harmonic injection method for NVH optimization of permanent magnet synchronous motors considering the structural characteristics of the machine

2024-07-02
2024-01-3015
Noise, vibration and harshness (NVH) is one of the most important performance evaluation aspect of electric motors. Among the different causes of the NVH issues of electrical drives, the high-frequency spatial and temporal harmonics of the electrical drive system is of great importance. To reduce the tonal noise of the electric motors, harmonic injection methods can be applied. However, a lot of the existing related work focuses more on improving the optimization process of the parameter settings of the injected current/flux/voltage, which are usually limited to some specific working conditions. The applicability and effectivity of the algorithm to the whole frequency/speed range are not investigated. In this paper, a multi-domain pipeline of harmonic injection controller design for a permanent magnet synchronous motor (PMSM) is proposed.
Technical Paper

Current and Torque Harmonics Analysis of Dual Three-Phase Permanent-Magnet Synchronous Machines with Arbitrary Phase Shift Based on Model-in-the-Loop

2023-04-11
2023-01-0527
Dual three-phase permanent magnet synchronous machines (DTP-PMSM) are becoming increasingly popular in automotive electric powertrains due to their reduced phase currents and fault tolerance. The unique advantages of specific phase shift angles (such as 0°, 30°, 60°, etc.) between dual three-phase windings have been extensively studied. In this paper, the current and torque harmonics induced by the inverter are analyzed and the corresponding harmonics suppression strategy are proposed for a DTP-PMSM with different phase shift angles. In addition, this paper analyzes the effect of the phase shift angle between the dual three-phase windings on the torque ripple and phase losses, and proposes a novel optimal phase shift angle 80°. First, a mathematical vector space decomposition (VSD) model for a DTP-PMSM with arbitrary phase shift angles is derived.
Technical Paper

A Numerical Investigation of Potential Ion Current Sensor Applications in Premixed Charge Compression Ignition Engine

2022-09-16
2022-24-0041
Simultaneous reduction of engine pollutants (e.g., CO, THC, NOx, and soot) is one of the main challenges in the development of new combustion systems. Low-temperature combustion (LTC) concepts in compression ignition (CI) engines like premixed charged compression ignition (PCCI) make use of pre-injections to create a partly homogenous mixture. In the PCCI combustion regime, a direct correlation between injection and pollutant formation is no longer present because of long ignition delay times. In LTC combustion systems, the in-cylinder pressure sensor is normally used to help the combustion control. However, to allow the control of PCCI engines, new sensor concepts are investigated to obtain additional information about the PCCI combustion for advanced controller structures. In LTC combustion systems like gasoline-controlled autoignition (GCAI) concepts, the application of ion current sensors enables additional monitoring of the combustion process with real-time capability.
Journal Article

3D-CFD RANS Methodology to Predict Engine-Out Emissions with Gasoline-Like Fuel and Methanol for a DISI Engine

2022-09-16
2022-24-0038
Renewable fuels, such as bio- and e-fuels, are of great interest for the defossilization of the transport sector. Among these fuels, methanol represents a promising candidate for emission reduction and efficiency increase due to its very high knock resistance and its production pathway as e-fuel. In general, reliable simulation tools are mandatory for evaluating a specific fuel potential and optimizing combustion systems. In this work, a previously presented methodology (Esposito et al., Energies, 2020) has been refined and applied to a different engine and different fuels. Experimental data measured with a single cylinder engine (SCE) are used to validate RANS 3D-CFD simulations of gaseous engine-out emissions. The RANS 3D-CFD model has been used for operation with a toluene reference fuel (TRF) gasoline surrogate and methanol. Varying operating conditions with exhaust gas recirculation (EGR) and air dilution are considered for the two fuels.
Technical Paper

On Predictive Nozzle Simulations with Advanced Equations of State and Pressure Boundary Conditions

2022-03-29
2022-01-0504
The reduction of harmful emissions is a key challenge in fighting climate change and global warming. Besides battery electric vehicles (BEVs), improved engine efficiency and alternate fuels, such as e-fuels or biofuels, can improve the emission budget of the transportation sector. Pred ictive simulations can be utilized as these avoid relying on slow manufacturing processes and expensive experiments. As the properties of alternative fuels can change drastically compared to classical fuels, even engine parameters, such as the mass flow rate, need to be reevaluated and optimized. However, simulation frameworks often rely on mass flow rates as input quantity, and hence, a prediction is impossible. This paper gives accurate pressure-based boundary conditions for multiphase systems and focuses on equations of state (EOS) employed in homogeneous equilibrium models (HEMs). Additionally, a dual-density approach is introduced to correct modeling errors that are intrinsic to a particular EOS.
Journal Article

Applying Physics-Informed Enhanced Super-Resolution Generative Adversarial Networks to Large-Eddy Simulations of ECN Spray C

2022-03-29
2022-01-0503
Large-eddy simulation (LES) is an important tool to understand and analyze sprays, such as those found in engines. Subfilter models are crucial for the accuracy of spray-LES, thereby signifying the importance of their development for predictive spray-LES. Recently, new subfilter models based on physics-informed generative adversarial networks (GANs) were developed, known as physics-informed enhanced super-resolution GANs (PIESRGANs). These models were successfully applied to the Spray A case defined by the Engine Combustion Network (ECN). This work presents technical details of this novel method, which are relevant for the modeling of spray combustion, and applies PIESRGANs to the ECN Spray C case. The results are validated against experimental data, and computational challenges and advantages are particularly emphasized compared to classical simulation approaches.
Technical Paper

Development of a Fast-Running Injector Model with Artificial Neural Network (ANN) for the Prediction of Injection Rate with Multiple Injections

2021-09-05
2021-24-0027
The most challenging part of the engine combustion development is the reduction of pollutants (e.g. CO, THC, NOx, soot, etc.) and CO2 emissions. In order to achieve this goal, new combustion techniques are required, which enable a clean and efficient combustion. For compression ignition engines, combustion rate shaping, which manipulates the injected fuel mass to control the in-cylinder pressure trace and the combustion rate itself, turned out to be a promising opportunity. One possibility to enable this technology is the usage of specially developed rate shaping injectors, which can control the injection rate continuously. A feasible solution with series injectors is the usage of multiple injections to control the injection rate and, therefore, the combustion rate. For the control of the combustion profile, a detailed injector model is required for predicting the amount of injected fuel. Simplified 0D models can easily predict single injection rates with low deviation.
Technical Paper

Development of Phenomenological Models for Engine-Out Hydrocarbon Emissions from an SI DI Engine within a 0D Two-Zone Combustion Chamber Description

2021-09-05
2021-24-0008
The increasingly stringent limits on pollutant emissions from internal combustion engine-powered vehicles require the optimization of advanced combustion systems by means of virtual development and simulation tools. Among the gaseous emissions from spark-ignition engines, the unburned hydrocarbon (HC) emissions are the most challenging species to simulate because of the complexity of the multiple physical and chemical mechanisms that contribute to their emission. These mechanisms are mainly three-dimensional (3D) resulting from multi-phase physics - e.g., fuel injection, oil-film layer, etc. - and are difficult to predict even in complex 3D computational fluid-dynamic (CFD) simulations. Phenomenological models describing the relationships between the physical-chemical phenomena are of great interest for the modeling and simplification of such complex mechanisms.
Technical Paper

Proof of Concept for Hardware-in-the-Loop Based Knock Detection Calibration

2021-04-06
2021-01-0424
Knock control is one of the most vital functions for safe and fuel-efficient operation of gasoline engines. However, all knock control strategies rely on accurate knock detection to operate the engine close to the optimal set point. Knock detection is usually calibrated on the engine test bench, requiring the engine to run with knocking combustion in a time-consuming multi-stage campaign. Model-based calibration significantly reduces calibration loops on the test bench. However, this method requires a large effort in building and validating the model, which is often limited by the lack of function documentation, available measurements or hardware representation. As the software models are often not available, function structures vary between manufacturers and sub model functions are often documented as black boxes. Hence, using the model-based approach is not always possible.
Technical Paper

Hardware-in-the-Loop Testing of Electric Traction Drives with an Efficiency Optimized DC-DC Converter Control

2020-04-14
2020-01-0462
In order to reduce development cost and time, frontloading is an established methodology for automotive development programs. With this approach, particular development tasks are shifted to earlier program phases. One prerequisite for this approach is the application of Hardware-in-the-Loop test setups. Hardware-in-the-Loop methodologies have already successfully been applied to conventional as well as electrified powertrains considering various driving scenarios. Regarding driving performance and energy demand, electrified powertrains are highly dependent on the dc-link voltage. However, there is a particular shortage of studies focusing on the verification of variable dc-link voltage controls by Hardware-in-the-Loop setups. This article is intended to be a first step towards closing this gap. Thereto, a Hardware-in-the-Loop setup of a battery electric vehicle is developed.
Technical Paper

Objectified Evaluation and Classification of Passenger Vehicles Longitudinal Drivability Capabilities in Automated Load Change Drive Maneuvers at Engine-in-the-Loop Test Benches

2020-04-14
2020-01-0245
The growing number of passenger car variants and derivatives in all global markets, their high degree of software differentiability caused by regionally different legislative regulations, as well as pronounced market-specific customer expectations require a continuous optimization of the entire vehicle development process. In addition, ever stricter emission standards lead to a considerable increase in powertrain hardware and control complexity. Also, efforts to achieve market and brand specific multistep adjustable drivability characteristics as unique selling proposition, rapidly extend the scope for calibration and testing tasks during the development of powertrain control units. The resulting extent of interdependencies between the drivability calibration and other development and calibration tasks requires frontloading of development tasks.
Technical Paper

LES Modeling Study on Cycle-to-Cycle Variations in a DISI Engine

2020-04-14
2020-01-0242
The reduction of cycle-to-cycle variations (CCV) is a prerequisite for the development and control of spark-ignition engines with increased efficiency and reduced engine-out emissions. To this end, Large-Eddy Simulations (LES) can improve the understanding of stochastic in-cylinder phenomena during the engine design process, if the employed modeling approach is sufficiently accurate. In this work, an inhouse code has been used to investigate CCV in a direct-injected spark ignition (DISI) engine under fuel-lean conditions with respect to a stoichiometric baseline operating point. It is shown that the crank angle when a characteristic fuel mass fraction is burned, e.g. MFB50, correlates with the equivalence ratio computed as a local average in the vicinity of the spark plug. The lean operating point exhibits significant CCV, which are shown to be correlated also with the in-cylinder subfilter-scale (SFS) kinetic energy.
Technical Paper

Towards an Integral Combustion Model for Model-Based Control of PCCI Engines

2019-09-09
2019-24-0001
Physics-based models in a closed-loop feedback control of a premixed charge compression ignition (PCCI) engine can improve the combustion efficiency and potentially reduce harmful NOx and soot emissions. A stand-alone multi-zone combustion model has been proposed in the literature using a physics-based mixing approach. The scalar dissipation rate emerged as the determining parameter in the model for mixing among different zones in the mixture fraction space. However, the calculation of the scalar dissipation rate depends on three approaches: three-dimensional computational fluid dynamics (3-D CFD) combustion simulations based on representative interactive flamelet (RIF) model, tabulation, or an empirical algebraic model of the scalar dissipation rate fitted for the given operating conditions of the engine. While the 3-D CFD approach provides accurate results, it is computationally too expensive to use the multi-zone model in closed-loop control.
Journal Article

Ultra-Lean Pre-Chamber Gasoline Engine for Future Hybrid Powertrains

2019-09-09
2019-24-0104
Lean burn gasoline spark-ignition engines can support the reduction of CO2 emissions for future hybrid passenger cars. Very high efficiencies and very low NOx raw emissions can be achieved, if relative air/fuel ratios λ of 2 and above can be reached. The biggest challenge here is to assure a reliable ignition process and to enhance the fuel oxidation in order to achieve a short burn duration and a good combustion stability. This article aims at introducing an innovative combustion system fully optimized for ultra-lean operation and very high efficiency. Thereto, a new cylinder head concept has been realized with high peak firing pressure capability and with a low surface-to-volume ratio at high compression ratios. 1D and 3D simulations have been performed to optimize the compression ratio, charge motion and intake valve lift. Numerical calculations also supported the development of the ignition system.
Technical Paper

Efficient Power Electronic Inverter Control Developed in an Automotive Hardware-in-the-Loop Setup

2019-04-02
2019-01-0601
Hardware-in-the-Loop is a common and established testing method for automotive developments in order to study interactions between different vehicle components during early development phases. Hardware-in-the-Loop setups have successfully been utilized within several development programs for conventional and electrified powertrains already. However, there is a particular shortage of studies focusing on the development of inverter controls utilizing Hardware-in-the-Loop tests. This contribution shall provide a first step toward closing this gap. In this article, inverter controls with different pulse width modulations for varying modulation index are studied at a Hardware-in-the-Loop setup. Thereto, the inverter control for an interior permanent magnet synchronous machine is developed utilizing space vector pulse width modulation with overmodulation.
Technical Paper

Accurate Mean Value Process Models for Model-Based Engine Control Concepts by Means of Hybrid Modeling

2019-04-02
2019-01-1178
Advanced powertrains for modern vehicles require the optimization of conventional combustion engines in combination with tailored electrification and vehicle connectivity strategies. The resulting systems and their control devices feature many degrees of freedom with a large number of available adjustment parameters. This obviously presents major challenges to the development of the corresponding powertrain control logics. Hence, the identification of an optimal system calibration is a non-trivial task. To address this situation, physics-based control approaches are evolving and successively replacing conventional map-based control strategies in order to handle more complex powertrain topologies. Physics-based control approaches enable a significant reduction in calibration effort, and also improve the control robustness.
Technical Paper

Real-Time Modeling of a 48V P0 Mild Hybrid Vehicle with Electric Compressor for Model Predictive Control

2019-04-02
2019-01-0350
In order to reduce pollutant and CO2 emissions and fulfill future legislative requirements, powertrain electrification is one of the key technologies. In this context, especially 48V technologies offer an attractive cost to CO2 reduction ratio. 48V mild hybrid powertrains greatly benefit from additional electric intake air compression (E-Charging) and direct torque assist by an electric machine (E-Boosting). Both systems significantly improve the transient engine behavior while reducing the low end torque drawbacks of extreme downsizing and downspeeding. Since E-Charging and E-Boosting have different characteristics concerning transient torque response and energy efficiency, application of model predictive control (MPC) is a particularly suitable method to improve the operating strategy of these functions. MPC requires fast running real-time capable models that are challenging to develop for systems with pronounced nonlinearities.
Technical Paper

Scalable Mean Value Modeling for Real-Time Engine Simulations with Improved Consistency and Adaptability

2019-04-02
2019-01-0195
This article discusses highly flexible and accurate physics-based mean value modeling (MVM) for internal combustion engines and its wide applicability towards virtual vehicle calibration. The requirement to fulfill the challenging Real Driving Emissions (RDE) standards has significantly increased the demand for precise engine models, especially models regarding pollutant emissions and fuel economy. This has led to a large increase in effort required for precise engine modeling and robust model calibration. Two best-practice engine modeling approaches will be introduced here to satisfy these requirements. These are the exclusive MVM approach, and a combination of MVM and a Design of Experiments (DOE) model for heterogeneous multi-domain engine systems.
X