Refine Your Search

Topic

Search Results

Journal Article

Spatially Optimized Diffusion Alloys: A Novel Multi-Layered Steel Material for Exhaust Applications

2020-04-14
2020-01-1051
A novel Spatially Optimized Diffusion Alloy (SODA) material has been developed and applied to exhaust systems, which are an aggressive environment subject to high temperatures and loads, as well as excessive corrosion. Traditional stainless steels disperse chromium homogeneously throughout the material, with varying amounts ranging from 10% to 20% dependent upon its grade (e.g. 409, 436, 439, 441, and 304). SODA steels, however, offer layered concentrations of chromium, enabling an increased amount along the outer surface for much needed corrosion resistance and aesthetics. This outer layer, typically about 70μm thick, exceeds 20% of chromium concentration locally, but is less than 3% in bulk, offering selective placement of the chromium to minimize its overall usage. Since this layer is metallurgically bonded, it cannot delaminate or separate from its core, enabling durable protection throughout manufacturing processes and full useful life.
Technical Paper

A Fatigue S-N Curve Transformation Technique and Its Applications in Fatigue Data Analysis

2018-04-03
2018-01-0791
The approaches of obtaining both fatigue strength distribution and fatigue life distribution for a given set of fatigue S-N data are reviewed in this paper. A new fatigue S-N curve transformation technique, which is based on the fundamental statistics definition and some reasonable assumptions, is specifically developed in this paper to transform a fatigue life distribution to a fatigue strength distribution. The procedures of applying the technique to multiple-stress level, two-stress level, and one-stress level fatigue S-N data are presented.
Technical Paper

Developing Design Guidelines for an SCR Assembly Equipped for RF Sensing of NH3 Loading

2018-04-03
2018-01-1266
The Cu-zeolite (CuZ) SCR catalyst enables higher NOx conversion efficiency in part because it can store a significant amount of NH3. “NH3 storage control”, where diesel exhaust fluid (DEF) is dosed in accord with a target NH3 loading, is widely used with CuZ catalysts to achieve very high efficiency. The NH3 loading actually achieved on the catalyst is currently estimated through a stoichiometric calculation. With future high-capacity CuZ catalyst designs, it is likely that the accuracy of this NH3 loading estimate will become limiting for NOx conversion efficiency. Therefore, a direct measurement of NH3 loading is needed; RF sensing enables this. Relative to RF sensing of soot in a DPF (which is in commercial production), RF sensing of NH3 adsorbed on CuZ is more challenging. Therefore, more attention must be paid to the “microwave resonance cavity” created within the SCR assembly. The objective of this study was to develop design guidelines to enable and enhance RF sensing.
Technical Paper

A Probabilistic Approach in Virtual CAE Fatigue Life Prediction for Components of Exhaust System

2018-04-03
2018-01-1397
Component bench testing is a basic method to validate the component fatigue life. However, the component bench testing takes long time and is costly. With the development of more powerful computer and CAE simulation techniques, virtual CAE simulation method becomes more important in the component design, optimization, and validation due to its efficiency and low cost. Fatigue life of components of exhaust system is a critical characteristic and it is not deterministic but statistical phenomenon. Thus, a probabilistic approach is necessary. Variations and reliability of fatigue life can be considered in physical testing by testing more samples. However, how to account variations from manufacturing and testing in virtual CAE simulation is a big challenge. In this paper, a virtual CAE fatigue life prediction of components of exhaust system by probabilistic approach is studied and proposed.
Technical Paper

Corrosion-Fatigue Modeling and Materials Performance Ranking

2018-04-03
2018-01-1409
Corrosion-fatigue (CF) and stress corrosion cracking (SCC) have long been recognized as the major degradation and failure mechanisms of engineering materials under combined mechanical loading and corrosive environments. How to model and characterize these failure phenomena and how to screen, rank, and select materials in corrosion-fatigue and stress corrosion cracking resistance is a significant challenge in the automotive industry and many engineering applications. In this paper, the mathematical structure of a superposition-theory based corrosion-fatigue model is investigated and possible closed-form and approximate solutions are sought. Based on the model and the associated solutions and test results, screening and ranking of the materials in fatigue, corrosion-fatigue are discussed.
Technical Paper

Comparative Corrosion Evaluation of Ferritic Stainless Steels Utilized in Automotive Exhaust Applications

2018-04-03
2018-01-1407
The purpose of this work was to initiate a comparative evaluation of the aqueous corrosion resistance of ferritic stainless steels currently used to fabricate automotive exhaust systems. Both acid condensate and double loop electrochemical potentiokinetic reactivation (DL-EPR) testing using both as-received and heat treated test coupons prepared from Types 409, 409Al, 436 and 439 stainless steel was conducted for this purpose. A truncated version of an in-house acid condensate testing protocol revealed that Type 409Al stainless steel was the most resistant to corrosion of the four ferritic stainless steels examined, whereas Type 409 stainless steel was the least resistance to corrosion.
Technical Paper

Durability Analysis of 3-Axis Input to Elastomeric Front Lower Control Arm Vertical Ride Bushing

2017-06-05
2017-01-1857
Fatigue life prediction of elastomer NVH suspension products has become an operating norm for OEMs and suppliers during the product quoting process and subsequent technical reviews. This paper reviews a critical plane analysis based fatigue simulation methodology for a front lower control arm. Filled natural rubber behaviors were measured and defined for the analysis, including: stress-strain, fatigue crack growth, strain crystallization, fatigue threshold and initial crack precursor size. A series of four distinct single and dual axis bench durability tests were derived from OEM block cycle specifications, and run to end-of-life as determined via a stiffness loss criterion. The tested parts were then sectioned in order to compare developed failure modes with predicted locations of crack initiation. In all cases, failure mode was accurately predicted by the simulation, and predicted fatigue life preceded actual end-of-life by not more than a factor of 1.4 in life.
Journal Article

Statistical Characterization, Pattern Identification, and Analysis of Big Data

2017-03-28
2017-01-0236
In the Big Data era, the capability in statistical and probabilistic data characterization, data pattern identification, data modeling and analysis is critical to understand the data, to find the trends in the data, and to make better use of the data. In this paper the fundamental probability concepts and several commonly used probabilistic distribution functions, such as the Weibull for spectrum events and the Pareto for extreme/rare events, are described first. An event quadrant is subsequently established based on the commonality/rarity and impact/effect of the probabilistic events. Level of measurement, which is the key for quantitative measurement of the data, is also discussed based on the framework of probability. The damage density function, which is a measure of the relative damage contribution of each constituent is proposed. The new measure demonstrates its capability in distinguishing between the extreme/rare events and the spectrum events.
Technical Paper

Development of Probabilistic Fatigue Life Distribution Functions with Lower and Upper Bounds

2017-03-28
2017-01-0354
A probabilistic distribution function roughly consists of two parts: the middle part and the tails. The fatigue life distribution at a stress/load level is often described with two-parameter lognormal or Weibull distribution functions, which are more suitable for modeling the mean (middle) behaviors. The domains of the conventional probabilistic distribution functions are often unbounded, either infinite small (0 for the two-parameter Weibull) or infinite large or both. For most materials in low- and medium-cycle fatigue regimes, the domains of fatigue lives are usually bounded, and the inclusion of the bounds in a probabilistic model is often critical in some applications, such as product validation and life management. In this paper, four- and five-parameter Weibull distribution functions for the probabilistic distributions with bounds are developed. Finally, the applications of these new models in fatigue data analysis and damage assessment are provided and discussed.
Technical Paper

Consideration of Temperature Effects in Thermal-Fatigue Performance Assessment of Components with Stress Raisers

2017-03-28
2017-01-0352
Durability and reliability assessment of stress raisers is difficult in testing because the true deformation at a stress raiser often cannot be directly measured. Many approximate engineering approaches have been developed over the last decades, but further fundamental understanding of the problems and the development of more effective engineering methods are still strongly demanded. In this paper, several new concepts and engineering testing approaches are developed and introduced with the emphasis on thermal-fatigue assessment of welded structures.
Technical Paper

Accelerated Reliability Demonstration Methods Based on Three-Parameter Weibull Distribution

2017-03-28
2017-01-0202
Life testing or test-to-failure method and binomial testing method are the two most commonly used methods in product validation and reliability demonstration. The two-parameter Weibull distribution function is often used in the life testing and almost exclusively used in the extended time testing, which can be considered as an accelerated testing method by appropriately extending the testing time but with significantly reduced testing samples. However, the fatigue data from a wide variety of sources indicate that the three-parameter Weibull distribution function with a threshold parameter at the left tail is more appropriate for fatigue life data with large sample sizes. The uncertainties introduced from the assumptions about the underlying probabilistic distribution would significantly affect the interpretation of the test data and the assessment of the performance of the accelerated binomial testing methods, therefore, the selection of a probabilistic model is critically important.
Technical Paper

Development of Lightweight Hanger Rods for Vehicle Exhaust Applications

2017-03-28
2017-01-1709
Recent stringent government regulations on emission control and fuel economy drive the vehicles and their associated components and systems to the direction of lighter weight. However, the achieved lightweight must not be obtained by sacrificing other important performance requirements such as manufacturability, strength, durability, reliability, safety, noise, vibration and harshness (NVH). Additionally, cost is always a dominating factor in the lightweight design of automotive products. Therefore, a successful lightweight design can only be accomplished by better understanding the performance requirements, the potentials and limitations of the designed products, and by balancing many conflicting design parameters. The combined knowledge-based design optimization procedures and, inevitably, some trial-and-error design iterations are the practical approaches that should be adopted in the lightweight design for the automotive applications.
Journal Article

Failure Mode Effects and Fatigue Data Analyses of Welded Vehicle Exhaust Components and Its Applications in Product Validation

2016-04-05
2016-01-0374
Vehicle exhaust components and systems under fatigue loading often show multiple failure modes, which should be treated, at least theoretically, with rigorous advanced bi-modal and multi-modal statistical theories and approaches. These advanced methods are usually applied to mission-critical engineering applications such as nuclear and aerospace, in which large amounts of test data are often available. In the automotive industry, however, the sample size adopted in the product validation is usually small, thus the bi-modal and multi-modal phenomena cannot be distinguished with certainty.
Technical Paper

Probabilistic Isothermal, Anisothermal, and High-Temperature Thermo-Mechanical Fatigue Life Assessment and CAE Implementations

2016-04-05
2016-01-0370
Fatigue life assessment is an integral part of the durability and reliability evaluation process of vehicle exhaust components and systems. The probabilistic life assessment approaches, including analytical, experimental, and simulation, CAE implementation in particular, are attracting significant attentions in recent years. In this paper, the state-of-the-art probabilistic life assessment methods for vehicle exhausts under combined thermal and mechanical loadings are reviewed and investigated. The loading cases as experienced by the vehicle exhausts are first categorized into isothermal fatigue, anisothermal fatigue, and high-temperature thermomechanical fatigue (TMF) based on the failure mechanisms. Subsequently, the probabilistic life assessment procedures for each category are delineated, with emphasis on product validation.
Journal Article

A Unified Framework for Representing Product Validation Testing Methods and Conducting Reliability Analysis

2016-04-05
2016-01-0269
Durability and reliability performance is one of the most important concerns for vehicle components and systems, which experience cyclic fatigue loadings and may eventually fail over time. Durability and reliability assessment and associated product validation require effective and robust testing methods. Several testing methods are available and among them, three basic testing methods are widely used: life testing, binomial testing (bogey testing), and degradation testing. In fact, their commonalities, differences, and relationships have not been clearly defined and fully understood. Therefore, the maximum potential of these testing methods to generate efficient, optimized, and cost-effective testing plans, consistent results, and meaningful results interpretation have been significantly limited. In this paper, a unified framework for representing these testing methods and conducting reliability analysis in a single damage-cycle (D-N) diagram is provided.
Journal Article

Probabilistic Life and Damage Assessment of Components under Fatigue Loading

2015-09-29
2015-01-2759
This study presents a probabilistic life (failure) and damage assessment approach for components under general fatigue loadings, including constant amplitude loading, step-stress loading, and variable amplitude loading. The approach consists of two parts: (1) an empirical probabilistic distribution obtained by fitting the fatigue failure data at various stress range levels, and (2) an inverse technique, which transforms the probabilistic life distribution to the probabilistic damage distribution at any applied cycle. With this approach, closed-form solutions of damage as function of the applied cycle can be obtained for constant amplitude loading. Under step-stress and variable amplitude loadings, the damage distribution at any cycle can be calculated based on the accumulative damage model in a cycle-by-cycle manner. For Gaussian-type random loading, a cycle-by-cycle equivalent, but a much simpler closed-form solution can be derived.
Journal Article

Fatigue Life and Non-Linear Strength Predictions for Heavy Stamping Steel Parts

2015-04-14
2015-01-0605
Strength and fatigue life prediction is very difficult for stamped structural steel parts because the manufacturing process alters the localized material properties. Traditional tensile tests cannot be used to obtain material properties due to size limitations. Because of this, FEA predictions are most often “directional” at best. In this paper an improved prediction methodology is suggested. With a material library developed from standard homogenous test specimens, or even textbook material property tables, localized strength and plastic strain numbers can be inferred from localized hardness tests(1). The new method, using standard ABAQUS static analysis (not commercial fatigue analysis software with many unknowns), is shown to be very accurate. This paper compares the new process FEA strength and fatigue life predictions to laboratory test results using statistical confidence intervals.
Technical Paper

Fatigue Design Curve Construction for Test Data with Linear/Linearized and Universal Slope Characteristics

2015-04-14
2015-01-0427
Fatigue testing and related fatigue life assessment are essential parts of the design and validation processes of vehicle components and systems. Fatigue bench test is one of the most important testing methods for durability and reliability assessment, and its primary function is to construct design curves based on a certain amount of repeated tests, with which recommendations on product design can be advised. How to increase the accuracy of predictions from test results, the associated life assessment, and to reduce the cost through reducing test sample size is an active and continuous effort. In this paper the current engineering practices on constructing design curves for fatigue test data are reviewed first.
Technical Paper

A Two-Parameter Model for Mixed-Mode Fatigue Crack Growth and Multiaxial Fatigue

2015-04-14
2015-01-0541
Engineering components and systems are usually subjected to mixed-mode and multiaxial fatigue loadings, and these conditions should be considered in product durability and reliability design and the maintenance of aging equipment, especially mission-critical components and systems. However, modeling the damage and degradation processes under these complex loading conditions is difficult and challenging task because not only the concepts, such as range, mean, peak, valley etc., developed for uniaxial loading usually cannot be directly transferred to mixed-mode and multiaxial loadings, but also some very unique phenomena related to these complex loading conditions. One such a phenomenon is the loading path effect that can be simply described as: out-of-phase loading is more damaging than in-phase loading for some ductile materials.
Technical Paper

Low Temperature SCR Catalysts Optimized for Cold-Start and Low-Load Engine Exhaust Conditions

2015-04-14
2015-01-1026
The main objective of this work is to develop a low-temperature SCR catalyst for the reduction of nitrogen oxides at cold start, low-idle and low-load conditions. A series of metal oxide- incorporated beta zeolite catalysts were prepared by adopting incipient wetness technique, cation-exchange, deposition-precipitation and other synthesis techniques. The resulting catalysts were characterized and tested for reduction of NOx in a fixed bed continuous flow quartz micro-reactor using ammonia as the reductant gas. Initial catalyst formulations have been exhibited good NOx reduction activity at low-temperatures. These catalyst formulations showed a maximum NOx conversion in the temperature range of 100 - 350°C. Besides, more experiments were performed with the aim of optimizing these formulations with respect to the metal atomic ratio, preparation method, active components and supported metal type.
X