Refine Your Search

Topic

Search Results

Technical Paper

A Method for Identifying the Noise Characteristics of an Electric Motor System Based on Tests Conducted under Distinct Operating Conditions

2024-04-09
2024-01-2334
The noise tests of electric motor systems serve as the foundation for studying their acoustic issues. However, there is currently a lack of corresponding method for identifying key noise characteristics, such as the noise frequency range that needs to be considered, the significant noise order, and the resonance band worth paying attention to, based on experimental test data under actual operating conditions. This article proposes a method for identifying the noise characteristics of an electric motor system based on tests conducted under distinct operating conditions, which consists of three parts: identifying the primary frequency range, the significant order, and the important resonance band. Firstly, in order to extract noise with the primary energy, the concept of noise contribution is introduced. The primary frequency range and the significant order under a specific operating condition can be obtained after extraction.
Technical Paper

Braking Judder Test and Simulation Analysis of Commercial Vehicle

2024-04-09
2024-01-2342
Brake judder affects vehicle safety and comfort, making it a key area of research in brake NVH. Transfer path analysis is effective for analyzing and reducing brake judder. However, current studies mainly focus on passenger cars, with limited investigation into commercial vehicles. The complex chassis structures of commercial vehicles involve multiple transfer paths, resulting in extensive data and testing challenges. This hinders the analysis and suppression of brake judder using transfer path analysis. In this study, we propose a simulation-based method to investigate brake judder transfer paths in commercial vehicles. Firstly, road tests were conducted to investigate the brake judder of commercial vehicles. Time-domain analysis, order characteristics analysis, and transfer function analysis between components were performed.
Technical Paper

Assessing the Effects of Computational Model Parameters on Aerodynamic Noise Characteristics of a Heavy-Duty Diesel Engine Turbocharger Compressor at Full Operating Conditions

2024-04-09
2024-01-2352
In recent years, with the development of computing infrastructure and methods, the potential of numerical methods to reasonably predict aerodynamic noise in turbocharger compressors of heavy-duty diesel engines has increased. However, aerodynamic acoustic modeling of complex geometries and flow systems is currently immature, mainly due to the greater challenges in accurately characterizing turbulent viscous flows. Therefore, recent advances in aerodynamic noise calculations for automotive turbocharger compressors were reviewed and a quantitative study of the effects for turbulence models (Shear-Stress Transport (SST) and Detached Eddy Simulation (DES)) and time-steps (2° and 4°) in numerical simulations on the performance and acoustic prediction of a compressor under various conditions were investigated.
Technical Paper

Efficient Fatigue Performance Dominated Optimization Method for Heavy-Duty Vehicle Suspension Brackets under Proving Ground Load

2024-04-09
2024-01-2256
Lightweight design is a key factor in general engineering design practice, however, it often conflicts with fatigue durability. This paper presents a way for improving the effectiveness of fatigue performance dominated optimization, demonstrated through a case study on suspension brackets for heavy-duty vehicles. This case study is based on random load data collected from fatigue durability tests in proving grounds, and fatigue failures of the heavy-duty vehicle suspension brackets were observed and recorded during the tests. Multi-objective fatigue optimization was introduced by employing multiaxial time-domain fatigue analysis under random loads combined with the non-dominated sorting genetic algorithm II with archives.
Technical Paper

Combining Dynamic Movement Primitives and Artificial Potential Fields for Lane Change Obstacle Avoidance Trajectory Planning of Autonomous Vehicles

2024-04-09
2024-01-2567
Lane change obstacle avoidance is a common driving scenario for autonomous vehicles. However, existing methods for lane change obstacle avoidance in vehicles decouple path and velocity planning, neglecting the coupling relationship between the path and velocity. Additionally, these methods often do not sufficiently consider the lane change behaviors characteristic of human drivers. In response to these challenges, this paper innovatively applies the Dynamic Movement Primitives (DMPs) algorithm to vehicle trajectory planning and proposes a real-time trajectory planning method that integrates DMPs and Artificial Potential Fields (APFs) algorithm (DMP-Fs) for lane change obstacle avoidance, enabling rapid coordinated planning of both path and velocity. The DMPs algorithm is based on the lane change trajectories of human drivers. Therefore, this paper first collected lane change trajectory samples from on-road vehicle experiments.
Technical Paper

The Influence of Hyperparameters of a Neural Network on the Augmented RANS Model Using Field Inversion and Machine Learning

2024-04-09
2024-01-2530
In the field of vehicle aerodynamic simulation, Reynold Averaged Navier-Stokes (RANS) model is widely used due to its high efficiency. However, it has some limitations in capturing complex flow features and simulating large separated flows. In order to improve the computational accuracy within a suitable cost, the Field Inversion and Machine Learning (FIML) method, based on a data-driven approach, has received increasing attention in recent years. In this paper, the optimal coefficients of the Generalized k-ω (GEKO) model are firstly obtained by the discrete adjoint method of FIML, utilizing the results of wind tunnel experiments. Then, the mapping relationship between the flow field characteristics and the optimal coefficients is established by a neural network to augment the turbulence model.
Technical Paper

A MPC based Cooperated Control Strategy for Enhanced Agility and Stability of Four-Wheel Steering and Drive Electric Vehicles

2024-04-09
2024-01-2768
Multiple actuators equipped in electric vehicles, such as four- wheel steering (4WS) and four-wheel drive (4WD), provide more degrees of freedom for chassis motion control. However, developing independent control strategies for distinct actuator types could result in control conflicts, potentially degrading the vehicle's motion performance. To address this issue, a model predictive control (MPC) based steering-drive cooperated control strategy for enhanced agility and stability of electric vehicles with 4WD and 4WS is proposed in this paper. By designing the control constraints within the MPC framework, the strategy enables single-drive control, single-steering control, and steering-drive cooperative control. In the upper control layer, a linear time-varying MPC (LTV-MPC) is designed to generate optimal additional yaw moment and additional steering angles of front and rear wheels to enhance vehicle agility and lateral stability.
Technical Paper

Lane Changing Comfort Trajectory Planning of Intelligent Vehicle Based on Particle Swarm Optimization Improved Bezier Curve

2023-12-31
2023-01-7103
This paper focuses on lane-changing trajectory planning and trajectory tracking control in autonomous vehicle technology. Aiming at the lane-changing behavior of autonomous vehicles, this paper proposes a new lane-changing trajectory planning method based on particle swarm optimization (PSO) improved third-order Bezier curve path planning and polynomial curve speed planning. The position of Bezier curve control points is optimized by the particle swarm optimization algorithm, and the lane-changing trajectory is optimized to improve the comfort of lane changing process. Under the constraints of no-collision and vehicle dynamics, the proposed method can ensure that the optimal lane-changing trajectory can be found in different lane-changing scenarios. To verify the feasibility of the above planning algorithm, this paper designs the lateral and longitudinal controllers for trajectory tracking control based on the vehicle dynamic tracking error model.
Technical Paper

Critical Scenarios Based on Graded Hazard Disposal Model of Human Drivers

2023-12-20
2023-01-7054
In order to improve the efficiency of safety performance test for intelligent vehicles and construct the test case set quickly, critical scenarios based on graded hazard disposal model of human drivers are proposed, which can be used for extraction of test cases for safety performance. Based on the natural driving data in China Field Operational Test (China-FOT), the four-stage collision avoidance process of human drivers is obtained, including steady driving stage, risk judgment stage, collision reaction stage and collision avoidance stage. And there are two human driver states: general state and alert state. Then the graded hazard disposal model of human drivers is constructed.
Technical Paper

MPC-Based Downhill Coasting-Speed Control Method for Motor-Driven Vehicles

2023-04-11
2023-01-0544
To improve the maneuverability and energy consumption of an electrical vehicle, a two-level speed control method based on model predictive control (MPC) is proposed for accurate control of the vehicle during downhill coasting. The targeted acceleration is planned using the anti-interference speed filter and MPC algorithm in the upper-level controller and executed using the integrated algorithm with the inverse vehicle dynamics and proportional-integral-derivative control model (PID) in the lower-level controller, improving the algorithm’s anti-interference performance and road adaptability. Simulations and vehicle road tests showed that the proposed method could realize accurate real-time speed control of the vehicle during downhill coasting. It can also achieve a smaller derivation between the actual and targeted speeds, as well as more stable speeds when the road resistance changes abruptly, compared with the conventional PID method.
Technical Paper

Analysis and Redesign of Connection Part in Cargo Truck Chassis for Fatigue Durability Performance

2023-04-11
2023-01-0599
With the growing prosperity of the long-distance freight and urban logistics industry, the demand for cargo trucks is gradually increasing. The connecting bracket is the critical connecting part of the truck chassis, which bears the load transmitted by the road excitation and reduces the damage to the frame caused by the load. However, the occurrence of rough road conditions is inevitable in heavy-duty transportation. In this paper, road durability tests and fatigue life analysis are carried out on the original structure to ensure the safety of the vehicle. Based on the known boundary and load constraints, a lightweight and high-performance structure is obtained through size optimization, as the original structure cannot meet the performance requirements. Firstly, the road test was conducted on the truck where the original bracket structure is located.
Technical Paper

An Interactive Car-Following Model (ICFM) for the Harmony-With-Traffic Evaluation of Autonomous Vehicles

2023-04-11
2023-01-0822
Harmony-with-traffic refers to the ability of autonomous vehicles to maximize the driving benefits such as comfort, efficiency, and energy consumption of themselves and the surrounding traffic during interactive driving under traffic rules. In the test of harmony-with-traffic, one or more background vehicles that can respond to the driving behavior of the vehicle under test are required. For this purpose, the functional requirements of car-following model for harmony-with-traffic evaluation are analyzed from the dimensions of test conditions, constraints, steady state and dynamic response. Based on them, an interactive car-following model (ICFM) is developed. In this model, the concept of equivalent distance is proposed to transfer lateral influence to longitudinal. The calculation methods of expected speed are designed according to the different car-following modes divided by interaction object, reaction distance and equivalent distance.
Technical Paper

Research on Performance Testing and Evaluation System of Vehicle Time Sensitive Network

2023-04-11
2023-01-0923
In recent years, intelligent connected vehicle has become an important direction for future automotive research and development. In-vehicle Time-Sensitive Network is the core communication technology of ICV, and network performance test is a necessary step in the development process. Therefore, this paper studies the Time-Sensitive Network performance test system. Firstly, a Time-Sensitive Network performance test framework is designed, and a test scheme is formulated. Then, a control method that can flexibly configure the network topology is proposed. Finally, the physical verification of the system is carried out, and the influence of factors such as network topology, message frame length and communication frequency on the network communication performance is analyzed, which proves the reliability of the system.
Technical Paper

Function-Driven Generation Method for Continuous Scenarios of Autonomous Vehicles

2022-12-22
2022-01-7111
The scenario-based test method is now drawing more and more attention in the field of the test for autonomous vehicles. The predefined scenarios are used in the safety verification and performance evaluation of autonomous vehicles. However, the traditional generation method for predefined scenarios is parameterized and open-looped, which makes it challenging to generate diverse and complex scenarios. It is critical when testing high-level autonomous vehicles to verify their reliability in multiple behavior transitions. In this paper, a generation method for the continuous scenario is proposed to realize a function-driven iteration of scenarios for autonomous driving systems (ADS). The method consists of a functional model of ADS and a formal description of abstract scenario.
Technical Paper

Probabilistic Vehicle Trajectory Prediction Based on LSTM Encoder-Decoder and Attention Mechanism

2022-12-22
2022-01-7106
In order to realize driving safety in highway scenarios, autonomous vehicles need to predict and reason about the driving intentions and motion trajectories of surrounding target vehicles in the near feature. Essentially, trajectory prediction of target vehicles can be viewed as a typical time series generation problem, which predicts the future trajectory of the vehicle through analyzing the input of historical trajectory information or its control signals. In actual traffic scenarios, the movement between vehicles is a process of mutual game and cooperation, namely the future trajectory of a vehicle is not only related to its own historical trajectory, but also to surrounding vehicles motion. However, different surrounding traffic participants have different influence on the target vehicle, and the future motion of the vehicle is often affected by some specific surrounding traffic agents deeply.
Technical Paper

Object Detection and Tracking Based on Lidar for Autonomous Vehicles on Highway Conditions

2022-12-22
2022-01-7103
Multiple object detection and tracking are central aspects of modeling the environment of autonomous vehicles. Lidar is a necessary component in the autonomous driving system. Without Lidar sensors, we will most probably not see fully self-driving cars become a reality. Lidar sensing gives us high-resolution data by sending out thousands of laser signals. In advanced driver assistance systems or automated driving systems, 3-D point clouds from lidar scans are typically used to measure physical surfaces. Lidar is a powerful sensor that you can use in challenging environments where other sensors might prove inadequate. Lidar can provide a complete 360-degree view of a scene. This paper designs Lidar based multi-target detection and tracking system based on the traditional point cloud processing method including down-sampling, denoising, segmentation, and clustering objects.
Technical Paper

Performance Limitations Analysis of Visual Sensors in Low Light Conditions Based on Field Test

2022-12-22
2022-01-7086
Visual sensors are widely used in autonomous vehicles (AVs) for object detection due to the advantages of abundant information and low-cost. But the performance of visual sensors is highly affected by low light conditions when AVs driving at nighttime and in the tunnel. The low light conditions decrease the image quality and the performance of object detection, and may cause safety of the intended functionality (SOTIF) problems. Therefore, to analyze the performance limitations of visual sensors in low light conditions, a controlled light experiment on a proving ground is designed. The influences of low light conditions on the two-stage algorithm and the single-stage algorithm are compared and analyzed quantificationally by constructing an evaluation index set from three aspects of missing detection, classification, and positioning accuracy.
Technical Paper

Research on the Occupant Discomfort due to Safety Perception in Overtaking Scenarios

2022-12-22
2022-01-7089
With the widespread application of autonomous driving technology, occupant comfort has become a key topic. Occupant comfort of autonomous vehicles depends on the driving system’s performance, so studying the causes of occupant discomfort will help design driving systems. In addition to the discomfort in NVH and thermal comfort, occupant comfort is also affected by other factors such as safety perception. To study the impact of safety perception on comfort, this paper designed a road experiment and focused on the overtaking scenarios. Because the interaction between the ego vehicle and others is strong during overtaking, the occupants are more likely to receive visual stimuli, resulting in discomfort caused by safety perception. In the experiment, occupant discomfort scores were collected in real-time by the tool developed in this paper.
Technical Paper

Perception-Aware Path Planning for Autonomous Vehicles in Uncertain Environment

2022-12-22
2022-01-7077
Recent researches in autonomous driving mainly consider the uncertainty in perception and prediction modules for safety enhancement. However, obstacles which block the field-of-view (FOV) of sensors could generate blind areas and leaves environmental uncertainty a remaining challenge for autonomous vehicles. Current solutions mainly rely on passive obstacles avoidance in path planning instead of active perception to deal with unexplored high-risky areas. In view of the problem, this paper introduces the concept of information entropy, which quantifies uncertain information in the blind area, into the motion planning module of autonomous vehicles. Based on model predictive control (MPC) scheme, the proposed algorithm can plan collision-free trajectories while actively explore unknown areas to minimize environmental uncertainty. Simulation results under various challenging scenarios demonstrate the improvement in safety and comfort with the proposed perception-aware planning scheme.
Technical Paper

Rotor Temperature Monitoring and Torque Correction for IPMSM of New Energy Vehicle

2022-10-28
2022-01-7063
As the electric vehicle market grows rapidly, thermal analysis related to the performance of electric drive motors has gained increasing interest. However, it is hard to obtain rotor temperature for torque correction during operation which leads to unexpected inaccurate control of motors. Rotor temperature monitoring and torque correction for IPMSM (Interior Permanent Magnet Synchronous motor) of new Energy vehicles are discussed in this paper. Considering the practical application, a low-order lumped parameter thermal network (LPTN) composed of three nodes is built for calculating the rotor temperature under different operating conditions on a 160kw IPMSM of a three-in-one electric drive. To identify the parameters of LPTN, the measurements were done on a test bench with a prototype of the three-in-one electric drive. K-type thermocouples were used to directly measure the temperature of each node.
X