Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Acoustic and Aerodynamic Performances of One Phononic Crystal Duct with Periodic Mufflers

2023-04-11
2023-01-0433
The acoustic muffler is one of the practical solutions to reduce the noise in ducts. The acoustic and aerodynamic performances are two critical indices of one muffler for the air intake system of a hydrogen fuel cell electric vehicle (FCEV). In this study, the concept of phononic crystal is applied to design the muffler to obtain superior acoustic performance. One duct with periodic and compact resonator-type mufflers is designed for broadband noise attenuation. The two-dimensional (2D) transfer matrix method and bandgap theory are employed to calculate the transmission loss (TL) and acoustic bandgap. It is numerically and theoretically demonstrated that broadband noise attenuation could be acquired from 500Hz to 3500Hz. Afterwards, the three-dimensional (3D) computational fluid dynamics (CFD) approach is applied to predict the pressure distribution. The results indicate that the proposed hybrid muffler and the phononic crystal duct possess low pressure loss values.
Technical Paper

Motor Stator Modeling and Equivalent Material Parameters Identification for Electromagnetic Noise Calculation

2023-04-11
2023-01-0530
Aiming at the laborious process in motor structure modeling for acoustic noise calculation, an improved stator structure modeling scheme is proposed, which includes stator structure simplification and equivalent material parameters identification. The stator assembly is modeled as a homogeneous solid with the same size as the stator core, and the influence of model simplification is compensated by orthotropic equivalent material parameters. The equivalent material parameters are acquired through an optimization algorithm by minimizing the error between FEM calculated modal frequencies and the modal tested results. With the stator assembly model, the motor assembly model is built, and the constrained modal characteristics of the motor assembly are verified by comparing the modal frequencies to the resonance bands in the vibration acceleration spectrum. Finally, the motor structure model is used to calculate the electromagnetic noise of an induction motor.
Technical Paper

Noise Reduction Method of Induction Motor Based on Periodic Signal-Based Modulation Considering Frequency Band Characteristics of Electromagnetic Force

2023-04-11
2023-01-0534
This paper aims at the problem that the sideband vibration noise of induction motor caused by inverter pulse width modulation (PWM). The frequency distribution characteristics of the induction motor with 36 stator slots and 32 rotor slots (36/32 IM) are analyzed. Based on that, a frequency width selection method for the periodic signal-based modulation considering the characteristics of sideband electromagnetic force. Results show that this method can effectively reduce the peak value of the sound power level (SWL) of sideband noise of IM at different speeds. This method is also applicable to IMs with different pole-slot match.
Technical Paper

Optimization of the Finite Hybrid Piezoelectric Phononic Crystal Beam for the Low-Frequency Vibration Attenuation

2020-04-14
2020-01-0913
This paper presents a theoretical study of a finite hybrid piezoelectric phononic crystal (PC) beam with shunting circuits. The vibration transmissibility method (TM) is developed for the finite system. The uniform and non-uniform configurations of the resonators, piezoelectric patches and shunting circuits are respectively considered. The properties of the vibration attenuation of the hybrid PC beam undergoing bending vibration are investigated and quantified. It is shown that the proper relaxation of the periodicity of the PC is conducive to forming a broad vibration attenuation region. The hybrid piezoelectric PC combines the purely mechanical PC with the piezoelectric PC and provides more tunable mechanisms for the target band-gap. Taking the structural and circuit parameters into account, the design of experiments (DOE) method and the multi-objective genetic optimization method are employed to improve the vibration attenuation and meet the lightweight demand of the attachments.
Technical Paper

Transfer Path Analysis and Low-Frequency Vibration Reduction by Locally Resonant Phononic Crystal

2019-04-02
2019-01-0786
The motor has vibration characteristics of order and multi-band in the frequency domain, which is different from the internal combustion engine when it is used as the vehicle’s drive. These characteristics cannot be briefly attenuated by general methods, but make the phononic crystal (PC) an ideal solution to eliminate the vibration transmission of the motor, because the concentrated vibration peak can easily be blocked by the bandgap. In this paper, one dimensional locally resonant phononic crystal (LRPC) which has low-frequency bandgaps are arranged on the automotive subframe to absorbing vibration. The partial coherence analysis is used to analyze the transfer characteristic of vibration on the subframe. Then, 6 main paths are selected from the 18 vibration transmission paths, based on its high ratio of partial coherence coefficient in a certain frequency, and the arranged position, the spring stiffness and the resonator’s mass of the LRPCs are chosen based on this result.
X