Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

Potential for Passenger Car Energy Recovery through the Use of Kinetic Energy Recovery Systems (KERS)

2013-04-08
2013-01-0407
Various mechanical and electromechanical configurations have been proposed for the recapture of vehicle kinetic energy during deceleration. For example, in Formula One racing, a KERS (Kinetic Energy Recovery System) was mandated by the FIA for each racing car during the 2011 World Championship season and beyond, and many passenger car manufacturers are examining the potential for implementation of such systems or have already done so. In this work, we examine the potential energy savings benefits available with a KERS, as well as a few design considerations. Some sample calculations are provided to illustrate the concepts.
Technical Paper

Calculating Tire Overlap during Steady-State Cornering Maneuvers

2012-04-16
2012-01-0242
Vehicles running in wet conditions may experience hydroplaning of one or more tires. Hydroplaning can, and often does, change vehicle braking, acceleration and handling characteristics dramatically. Proper analysis of this behavior requires accommodating the clearing of paths for the rear tires that may result from the front tires engaging the water-coated surface first. In this work, tire overlap is calculated for vehicles in steady-state cornering maneuvers for generalized vehicle dimensions and tire characteristics.
Technical Paper

Potential for Hydroplaning Behavior during Transient Maneuvers

2012-04-16
2012-01-0211
Recent research on the effects of tire hydroplaning has examined the hydroplaning phenomenon and its potential effects on vehicle maneuvering from (1) geometric, (2) straight line braking/acceleration and (3) steady-state cornering maneuver points of view. In this work, we focus on the potential for hydroplaning during a transient maneuver: a standardized double lane change maneuver (ISO3888-1). Using both closed-form calculations and the HVE software suite, it is shown that partial hydroplaning has only a small-to- moderate potential to occur during portions of such maneuvers, but is not likely throughout the entire duration of the maneuver.
Journal Article

Hydroplaning Behavior during Steady- State Cornering Maneuvers

2011-04-12
2011-01-0986
Vehicles running in wet conditions may experience hydroplaning of one or more tires. Hydroplaning can, and often does, change vehicle braking, acceleration and handling characteristics dramatically. Proper analysis of this behavior requires accommodating the clearing of paths for the rear tires that may result from the front tires engaging the water-coated surface first. In this work, a hydroplaning analysis is presented that examines steady-state cornering under potential hydroplaning situations and includes lateral weight transfer, tire load sensitivity and path clearing potential. The sensitivity of vehicle understeer/oversteer characteristics to path clearing and vehicle dimensional characteristics is also examined.
Technical Paper

Force and Moment Characteristics of a Low Aspect Ratio Asymmetrically Worn Passenger Car Tire

2010-04-12
2010-01-0766
Many vehicles are equipped with independent suspension systems on the front and/or rear axle. As opposed to a DeDion or beam axle, independent suspension systems have the potential to generate camber and toe changes as the suspension strokes from full jounce to full rebound. Each vehicle suspension design presents unique camber and toe curves to the tire. To improve handling, manufacturers often set static camber on such vehicle suspension systems to nonzero values so that when cornering, the outside suspension will deflect so as to maximize cornering power and vehicle stability. Then, under straight driving conditions, the tires tend to predominantly wear their inside shoulder edges, producing the phenomenon known as camber wear.
Technical Paper

Road Evaluation of the Aerodynamic Characteristics of Heavy Trucks

2007-10-30
2007-01-4297
Coast down testing with full-scale vehicles on level and inclined roads offers an inexpensive approach to road load determination and, in particular, aerodynamic force evaluation, provided that drag component extractions can be accurately achieved under random instrumental disturbances and biased environmental conditions. Wind tunnel testing of large vehicles, especially truck/trailers, to establish their aerodynamic drag is costly and also may produce questionable results when the effects of the moving road, blockage, wake/diffuser interaction, and rotating tires are not properly simulated. On the road, testing is now conveniently and speedily carried out using GPS-based data acquisition and file storage on laptops, allowing instantaneous on-board data processing.
Technical Paper

Evaluation of the SIMON Tractor-Semitrailer Model for Steady State and Transient Handling

2006-10-31
2006-01-3479
This research compares the responses of a vehicle modeled in the 3D vehicle simulation program SIMON in the HVE simulation operating system against instrumented responses of a 3-axle tractor, 2-axle semi-trailer combination. The instrumented tests were previously described in SAE 2001-01-0139 and SAE 2003-01-1324 as part of a continuous research effort in the area of vehicle dynamics undertaken at the Vehicle Research and Test Center (VRTC). The vehicle inertial and mechanical parameters were measured at the University of Michigan Transportation Research Institute (UMTRI). The tire data was provided by Smithers Scientific Services, Inc. and UMTRI. The series of tests discussed herein compares the modeled and instrumented vehicle responses during quasi-steady state, steady state and transient handling maneuvers, producing lateral accelerations ranging nominally from 0.05 to 0.5 G's.
Technical Paper

Force and Moment Characteristics of Two Space-Saver Tires

2006-04-03
2006-01-1559
Many modern vehicles utilize so-called “space-saver” spare tires. Such tires are not fitted to the vehicle and driven on until a tire problem has arisen with a service tire, and are limited in the mileage and speed at which they can operate. They also may have quite different characteristics (rolling radius, tread pattern, contact patch width and length, aspect ratio, stiffnesses, self-aligning torques, etc.) than the service tires with which the vehicle is equipped. As such, they have the potential for presenting significantly different handling signatures to the driver when they are fitted.. In the present work, we present force and moment characteristics for two disparate space-saver spare tires. The tires were tested at the T.I.R.F. (TIre Research Facility), Calspan Corporation, Buffalo, NY.
Technical Paper

Behavior of a Motorcycle after an Encounter with a Road Irregularity Parallel to its Direction of Travel

2006-04-03
2006-01-1561
In the present work, we study motorcycle dynamics under conditions where the motorcycle-rider combination encounters either a step or a channel parallel to the direction of travel. Analyses are presented from the points of view of geometric, analytical and experimental approaches. As with passenger cars and trucks which encounter so-called “edge drop-offs,” the results depend on the magnitude and shape of the step or channel, velocity of the motorcycle and control input(s) of the rider, if any. Results show than for many common disturbance situations, difficulties may be experienced by the rider.
Technical Paper

What Constitutes Good Handling?

2004-11-30
2004-01-3532
The subject of qualitative and quantitative evaluation of vehicle handling has received emphasis and study since the first automobiles were constructed. Handling quality can be divided into three distinct regimes: (a) resistance to rollover, (b) steady-state behavior, and (c) transient behavior. Additionally, handling of a modern race car can and often must also be separated into handling characteristics due to mechanical grip and characteristics due to aerodynamic performance. For modern racing cars, rollover solely due to lateral acceleration is unlikely except for a few specialized types of racing cars (e.g., Bonneville). In the present work, we discuss handling from the perspectives of human control performance, vehicle metrics and handling test development. We show that from the point of view of the human operator, certain vehicle characteristics are important if emergency and high-g handling maneuvers are to have a chance of being properly executed by drivers.
Technical Paper

Engineering of a Bonneville Land Speed Record Streamliner

2004-11-30
2004-01-3524
Speed trials have been conducted on the Bonneville Salt Flats for more than 50 years. In many ways, land speed racing represents the ultimate in freedom, ingenuity and creativity for engineers and constructors. Most of the rules associated with the various classes (and there are literally hundreds of classes) are safety-related, while the rules associated with the design and construction of the vehicle itself are extremely free, with streamliner and lakester classes being the most uninhibited of all. This freedom of design leads to widely disparate attempts to solve the Bonneville riddle. To successfully race at Bonneville requires the engineer to possess expertise in a number of aspects of vehicle design and construction rarely seen in other forms of racing competition. We begin with an overview of the nature of land speed racing competition, and continue to a discussion of the engineering aspects and fundamental requirements of car design and behavior.
Book

Race Car Vehicle Dynamics - Problems, Answers and Experiments

2003-05-30
Written for the engineer as well as the race car enthusiast and students, this is a companion workbook to the original classic book, Race Car Vehicle Dynamics, and includes: Detailed worked solutions to all of the problems Problems for every chapter in Race Car Vehicle Dynamics, including many new problems The Race Car Vehicle Dynamics Program Suite (for Windows) with accompanying exercises Experiments to try with your own vehicle Educational appendix with additional references and course outlines Over 90 figures and graphs This workbook is widely used as a college textbook and has been an SAE International best seller since it's introduction in 1995. Buy the set and save! Race Car Vehicle Dynamics
Technical Paper

Potential for a Ground-Effects Top Fuel Dragster

2002-12-02
2002-01-3348
The current performance of a top fuel (T/F) dragster racing car is very high. The cars can accelerate from a standing start to well over 330 mph (528 km/h) in < 4.6 seconds! The engine of a T/F dragster can make considerably more power than can be put down to the track surface. Intentional clutch slippage prevents wheelspin for most of the ¼-mile (0.4 km) standard length racing run. Even though the drive tires used are highly specialized and specifically designed for this type of racing environment, more traction is needed. To create more traction, especially during the second ½ of the run, external wings have been employed by the designers of such cars. The size and configuration of the wings is limited according to sanctioning rules. Recent wing failures and accidents have made other options for the creation of downforce appear attractive. In the present work, we consider the potential for using the shape of the car itself to create the required down-force.
Technical Paper

Kinetic Energies Involved in Racing Facility Design

2002-12-02
2002-01-3344
The various forms of professional and amateur motor sports all require barriers, fences and deceleration/run-off areas for driver and spectator safety. We examine the translational and rotational kinetic energies involved for various types of race vehicles, and present some comparisons to typical energies encountered in everyday situations. Stopping distance vs. deceleration rates are also calculated, and some simplified trajectory analyses are performed for parts potentially launched during racing accidents.
Technical Paper

Deriving Wheel HP and Torque from Accelerometer Data

2000-11-13
2000-01-3544
Enthusiasts, accident reconstructionists and racing personnel have always been interested in wheel torque and HP values for vehicles. Modifications to the engine and/or driveline cause factory data to be in error, and special racing engines have no such data available in any case. Engine dynamometers provide useful information, but require the engine to be removed from the car before any testing can occur. Of more interest, particularly in competition situations, is the effect of changes at the driving wheels. We focus here on a simple method of deriving rim torque and HP values from accelerometer data. The data can be acquired using nearly any sufficiently accurate accelerometer package, and the calculations involved can be done by hand or with a spreadsheet program. Unknown vehicle characteristics can be extracted from coastdown tests. Use of a chassis dynamometer is not required.
Technical Paper

Sensitivity of Cornering Speeds to Banking and Aerodynamics

2000-11-13
2000-01-3570
In the scientific design of racing facilities and cars, a strong interplay exists between the aerodynamic characteristics permitted by the vehicle formula and the banking present at each track. We explore this relationship and in particular the sensitivity of various car and track combinations to changes in nominal values for banking and aerodynamic performance. Specific example calculations for NASCAR and IRL/CART vehicles and tracks are given.
Technical Paper

A Technique for Slowing Racing Cars After Off-Road Excursions: The Vehicle Arrester

2000-11-13
2000-01-3574
Off-road excursions are common in road racing. Current circuit design practice attempts to control off-road vehicle motion and speed with a combination of gravel traps and barriers. Low gravel trap deceleration rates, coupled with wide variation in vehicle attitude during such excursions, produce an unsatisfactory and unacceptable vehicle response. Barriers and walls, while more effective at creating high deceleration rates, can also produce unpredictable response, and often generate vehicle damage and driver injury when contacted, especially in road racing situations. We focus here on car control methods associated more with the vehicle than with the circuit. A new device, the Vehicle Arrester™, has been developed. Calculations and some experimental results indicate that the device could be extremely effective in producing high deceleration rates and a controlled vehicle heading during an excursion.
X