Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Force and Moment Characteristics of a Low Aspect Ratio Asymmetrically Worn Passenger Car Tire

2010-04-12
2010-01-0766
Many vehicles are equipped with independent suspension systems on the front and/or rear axle. As opposed to a DeDion or beam axle, independent suspension systems have the potential to generate camber and toe changes as the suspension strokes from full jounce to full rebound. Each vehicle suspension design presents unique camber and toe curves to the tire. To improve handling, manufacturers often set static camber on such vehicle suspension systems to nonzero values so that when cornering, the outside suspension will deflect so as to maximize cornering power and vehicle stability. Then, under straight driving conditions, the tires tend to predominantly wear their inside shoulder edges, producing the phenomenon known as camber wear.
Technical Paper

Soft Walls for Racetrack Barriers through the Use of Slatted Wall Design: A Conceptual First Analysis

2002-12-02
2002-01-3343
For a number of years, racetrack designers have been considering various designs for energy-absorbing or “soft” walls. Moving walls, water-filled barrels, tire walls and walls coated with various materials have all been suggested or employed to varying degrees of success. In this paper, a new concept involving a series of slats placed outward from the walls is outlined. First, fundamental requirements for a soft wall design are laid down. Then the development of the slatted wall is presented, along with a series of design variables able to be adjusted for particular applications. The slats have multiple modes of energy dissipation and absorption, and calculations show that the concept has good promise. Evaluation of various design alternatives can be largely done computationally, rather than experimentally, a great advantage given the expense of full-scale barrier testing.
X