Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Experimental Characterization of the Unsteady Flow Field behind Two outside Rear View Mirrors

2008-04-14
2008-01-0476
The unsteady flow fields behind two different automobile outside side rear view mirrors were examined experimentally in order to obtain a comprehensive data base for the validation of the ongoing computational investigation effort to predict the aero-acoustic noise due to the outside rear view mirrors. This study is part of a larger scheme to predict the aero-acoustic noise due to various external components in vehicles. To aid with the characterization of this complex flow field, mean and unsteady surface pressure measurements were undertaken in the wake of two mirror models. Velocity measurements with particle image velocimetry were also conducted to develop the mean velocity field of the wake. Two full-scale mirror models with distinctive geometrical features were investigated.
Technical Paper

Experimental Investigation of the Near Wake of a Pick-up Truck

2003-03-03
2003-01-0651
The results of an experimental investigation of the flow over a pickup truck are presented. The main objectives of the study are to gain a better understanding of the flow structure in near wake region, and to obtain a detailed quantitative data set for validation of numerical simulations of this flow. Experiments were conducted at moderate Reynolds numbers (∼3×105) in the open return tunnel at the University of Michigan. Measured quantities include: the mean pressure on the symmetry plane, unsteady pressure in the bed, and Particle Image Velocimetry (PIV) measurements of the flow in the near wake. The unsteady pressure results show that pressure fluctuations in the forward section of the bed are small and increase significantly at the edge of the tailgate. Pressure fluctuation spectra at the edge of the tailgate show a spectral peak at a Strouhal number of 0.07 and large energy content at very low frequency.
Technical Paper

Transient Simulation of the Flow Field Around a Generic Pickup Truck

2003-03-03
2003-01-1313
A complete transient, three dimensional simulation of the flow-field around a generic pickup truck geometry is carried out. A 1/12-scale replica of an actual pickup truck, with simplified features such as a smooth underbody, is considered in the study. The purpose of the study is twofold. First, it seeks to improve our understanding of the complex flow field around a pickup truck, which is predominantly a bluff body with a prominent wake. To this end a detail description of the time-averaged pressure distribution on the vehicle body as well as time-averaged velocities in the wake of the truck is provided. Secondly, the study seeks to judge the accuracy with which modern CFD techniques can predict complex, practical, bluff-body wake flows. This is accomplished by making a close comparison of the time-averaged wake velocity profiles predicted by CFD with analogous measurements made in a wind tunnel experiment using particle image velocimetry.
Technical Paper

Modifying an Intake Manifold to Improve Cylinder-to-Cylinder EGR Distribution in a DI Diesel Engine Using Combined CFD and Engine Experiments

2001-09-24
2001-01-3685
Improved cylinder-to-cylinder distribution of EGR in a 2-L Direct-Injection (DI) Diesel engine has been identified as one enabler to help reach more stringent emission standards. Through a combined effort of modeling, design, and experiment, two manifolds were developed that improve EGR distribution over the original manifold while minimizing design changes to engine components or interfering with the many varied vehicle platform installations. One of the modified manifolds, an elevated EGR entry (EEE) approach, provided a useful improvement over the original design that meet Euro-II emission standards, and has been put into production as it enabled meeting the Euro III emissions requirements a year early. The second revision, the distributed EGR entry (DEE) design, showed potential for further improvement in EGR distribution. This design has two EGR outlets rather than the one used in the original and EEE manifolds, and was first identified by modeling to be a promising concept.
Technical Paper

Experimental and Computational Study of Unsteady Wake Flow Behind a Bluff Body with a Drag Reduction Device

2001-03-05
2001-01-1042
Simple devices have been shown to be capable of tailoring the flow field around a vehicle and reducing aerodynamic drag. An experimental and computational investigation of a drag reduction device for bluff bodies in ground proximity has been conducted. The main goal of the research is to gain a better understanding of the drag reduction mechanisms in bluff-body square-back geometries. In principle, the device modifies the flow field behind the test model by disturbing the shear layer. As a consequence, the closure of the wake is altered and reductions in aerodynamic drag of more than 20 percent are observed. We report unsteady base pressure, hot-wire velocity fluctuations and Particle Image Velocimetry (PIV) measurements of the near wake of the two models (baseline and the modified models). In addition, the flows around the two configurations are simulated using the Reynolds Averaged Navier-Stokes (RANS) equations in conjunction with the V2F turbulence model.
X