Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

A Sampling and Conditioning Particle System for Solid Particle Measurements Down to 10 nm

2019-09-09
2019-24-0154
The measurement of vehicle particle number emissions and, therefore, regulation, necessitates a rigorous sampling and conditioning technology able to deliver solid emitted particles with minimum particle losses. European legislation follows a solid particle number measurement method with cutoff size at 23 nm proposed by the Particle Measurement Programme (PMP). Accordingly, the raw exhaust is sampled with constant volume, subsequently passes through a volatile particle remover (VPR), and finally is measured with a particle counter. Lowering the 23 nm cutoff size with current VPR technologies introduces measurement uncertainties mainly due to the high particle losses and possible creation of artefacts. This study describes the development and evaluation of a sampling and conditioning particle system, the SCPS, specially designed for sub-23 nm solid particles measurement.
Technical Paper

Growth and Restructuring Phenomena of Deposits in Particulate Filters

2018-04-03
2018-01-1265
As use of Particulate Filters (PFs) is growing not only for diesel but also for gasoline powered vehicles, the need for better understanding of deposit structure, growth dynamics and evolution arises. In the present paper we address a number of deposit growth and restructuring phenomena within particulate filters with the aim to improve particulate filter soot load estimation. To this end we investigate the dynamic factors that quantify the amount of particles that are stored within the wall and the restructuring of soot deposits. We demonstrate that particle accumulation inside the porous wall is dynamically controlled by the dimensionless Peclet number and provide a procedure for the estimation of parameters of interest such as the loaded filter wall permeability, the wall-stored soot mass at the onset of cake filtration.
Technical Paper

Emission Reduction Technologies for the Future Low Emission Rail Diesel Engines: EGR vs SCR

2013-09-08
2013-24-0087
The EU emission standards for new rail Diesel engines are becoming even more stringent. EGR and SCR technologies can both be used to reduce NOx emissions; however, the use of EGR is usually accompanied by an increase in PM emissions and may require a DPF. On the other hand, the use of SCR requires on-board storage of urea. Thus, it is necessary to study these trade-offs in order to understand how these technologies can best be used in rail applications to meet new emission standards. The present study assesses the application of these technologies in Diesel railcars on a quantitative basis using one and three dimensional numerical simulation tools. In particular, the study considers a 560 kW railcar engine with the use of either EGR or SCR based solutions for NOx reduction. The NOx and PM emissions performances are evaluated over the C1 homologation cycle.
Journal Article

Micro-Simulation of NO-NO2 Transport and Reaction in the Wall of a Catalyzed Diesel Particulate Filter

2008-04-14
2008-01-0442
Catalyzed Diesel Particulate Filters (CDPFs) continue to be an important emission control solution and are now also expanding to include additional functionalities such as gas species oxidation (such as CO, hydrocarbons and NO) and even storage phenomena (such as NOx and NH3 storage). Therefore an in depth understanding of the coupled transport - reaction phenomena occurring inside a CDPF wall can provide useful guidance for catalyst placement and improved accuracy over idealized effective medium 1-D and 0-D models for CDPF operation. In the present work a previously developed 3-D simulation framework for porous materials is applied to the case of NO-NO2 turnover in a granular silicon carbide CDPF. The detailed geometry of the CDPF wall is digitally reconstructed and micro-simulation methods are used to obtain detailed descriptions of the concentration and transport of the NO and NO2 species in the reacting environment of the soot cake and the catalyst coated pores of the CDPF wall.
Technical Paper

Study of a Sintered Metal Diesel Particulate Trap

2005-04-11
2005-01-0968
This paper describes work supporting the development of a new Diesel particulate trap system for heavy duty vehicles based on porous sintered metal materials that exhibit interesting characteristics with respect to ash tolerance. Experimental data characterizing the material (permeability, soot and ash deposit properties) are obtained in a dedicated experimental setup in the side-stream of a modern Diesel engine as well as in an accelerated ash loading rig. System level simulations coupling the new media characteristics to 3-D CFD software for the optimization of complete filter systems are then performed and comparative assessment results of example designs are given.
Technical Paper

Progress in Diesel Particulate Filter Simulation

2005-04-11
2005-01-0946
DPF design, system integration, regeneration control strategy optimization and ash ageing assessment, based on a traditional design of experiments approach becomes very time consuming and costly, due to the high number of tests required. This provides a privileged window of opportunity for the application of simulation tools and hence simulation is increasingly being used for the design of exhaust after-treatment systems with a Diesel Particulate Filter (DPF). DPF behavior depends strongly on the coupling of physico-chemical phenomena occurring over widely disparate spatial and temporal scales and a state-of-the-art simulation approach recognizes and exploits these facts introducing certain assumptions and/or simplifications to derive an accurate but computationally tractable DPF simulation tool, for the needs of industrial users.
Technical Paper

Simulation of Triangular-Cell-Shaped, Fibrous Wall-Flow Filters

2003-03-03
2003-01-0844
In the present work we apply a computational simulation framework developed for square-cell shaped honeycomb Diesel Particulate Filters to study the filtration, pressure drop and soot oxidation characteristics of recently developed triangular-cell-shaped, high porosity wall-flow filters. Emphasis is placed on the evaluation of the applicability and adaptation of the previously developed models to the case of triangular channels. To this end Computational Fluid Dynamics, asymptotic analysis, multichannel and “unit-cell” calculations are employed to analyze filter behavior and the results are shown to compare very well to experiments available in the literature.
Technical Paper

Inertial Contributions to the Pressure Drop of Diesel Particulate Filters

2001-03-05
2001-01-0909
Wall-flow Diesel particulate filters operating at low filtration velocities usually exhibit a linear dependence between the filter pressure drop and the flow rate, conveniently described by a generalized Darcy's law. It is advantageous to minimize filter pressure drop by sizing filters to operate within this linear range. However in practice, since there often exist serious constraints on the available vehicle underfloor space, a vehicle manufacturer is forced to choose an “undersized” filter resulting in high filtration velocities through the filter walls. Since secondary inertial contributions to the pressure drop become significant, Darcy's law can no longer accurately describe the filter pressure drop. In this paper, a systematic investigation of these secondary inertial flow effects is presented.
Technical Paper

Fundamental Studies of Diesel Particulate Filters: Transient Loading, Regeneration and Aging

2000-03-06
2000-01-1016
Compliance with future emission standards for diesel powered vehicles is likely to require the deployment of emission control devices, such as particulate filters and DeNOx converters. Diesel emission control is merging with powertrain management and requires deep knowledge of emission control component behavior to perform effective system level integration and optimization. The present paper focuses on challenges associated with a critical component of diesel emission control systems, namely the diesel particulate filter (DPF), and provides a fundamental description of the transient filtration/loading, catalytic/NO2-assisted regeneration and ash-induced aging behavior of DPF's.
Technical Paper

Periodically Reversed Flow Regeneration of Diesel Particulate Traps

1999-03-01
1999-01-0469
Diesel particulate filter regeneration (through oxidation of the collected soot particles) is not currently possible under all engine operating conditions without additional external thermal energy. The exploitation of the autothermal properties of the reverse flow reactor has been suggested to reduce further the soot ignition temperature and hereby is studied for the periodically reversed flow regeneration of soot particulate filters, with the aid of a mathematical model for the regeneration process, validated against experimental data. The numerical results confirm the capability of the new technique to effectively succeed where conventional regeneration fails, extending thus the operating limits of already practiced regeneration techniques (thermal or catalyst-assisted) and setting the stage for the construction of an industrial prototype.
X