Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Development and Testing of an EGR System for Medium Speed Diesel Engines

2012-04-16
2012-01-0680
Medium speed diesel engines are well established today as a power source for heavy transport and stationary applications and it appears that they will remain so in the future. However, emission legislation becomes stricter, reducing the emission limits of various pollutants to extremely low values. Currently, many techniques that are well established for automotive diesel engines (common rail, after treatment, exhaust gas recirculation - EGR, …) are being tested on these large engines. Application of these techniques is far from straightforward given the different requirements and boundary conditions (fuel quality, durability, …). This paper reports on the development and experimental results of cooled, high pressure loop EGR operation on a 1326kW four stroke turbocharged medium speed diesel engine, with the primary goal of reducing the emission of oxides of nitrogen (NOx). Measurements were performed at various loads and for several EGR rates.
Technical Paper

Investigation of Supercharging Strategies for PFI Hydrogen Engines

2010-04-12
2010-01-0582
Hydrogen-fueled internal combustion engines (H₂ICEs) are an affordable, practical and efficient technology to introduce the use of hydrogen as an energy carrier. They are practical as they offer fuel flexibility, furthermore the specific properties of hydrogen (wide flammability limits, high flame speeds) enable a dedicated H₂ICE to reach high efficiencies, bettering hydrocarbon-fueled ICEs and approaching fuel cell efficiencies. The easiest way to introduce H₂ICE vehicles is through converting engines to bi-fuel operation by mounting a port fuel injection (PFI) system for hydrogen. However, for naturally aspirated engines this implies a large power penalty due to loss in volumetric efficiency and occurrence of abnormal combustion. The present paper reports measurements on a single-cylinder hydrogen PFI engine equipped with an exhaust gas recirculation (EGR) system and a supercharging set-up.
Journal Article

Effects of Supercharging, EGR and Variable Valve Timing on Power and Emissions of Hydrogen Internal Combustion Engines

2008-04-14
2008-01-1033
Hydrogen-fueled internal combustion engines equipped with port fuel injection offer a cheap alternative to fuel cells and can be run in bi-fuel operation side-stepping the chicken and egg problem of availability of hydrogen fueling station versus hydrogen vehicle. Hydrogen engines with external mixture formation have a significantly lower power output than gasoline engines. The main causes are the lower volumetric energy density of the externally formed hydrogen-air mixture and the occurrence of abnormal combustion phenomena (mainly backfire). Two engine test benches were used to investigate different means of compensating for this power loss, while keeping oxides of nitrogen (NOx) emissions limited. A single cylinder research engine was used to study the effects of supercharging, combined with exhaust gas recirculation (EGR). Supercharging the engine results in an increase in power output.
X