Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Study on the Urea-Water Solution Dosing Strategy by NO/NOX Ratio of DeNOX SCR System

2015-03-10
2015-01-0057
In this study, SCR system is employed to selectively reduce NOX that is a major cause of environmental pollution from diesel engines. In particular, this paper focuses on urea injection strategies dependent on NO/ NOX ratio. An injection control algorithm is developed based on the chemical ratio between the amount of engine out NOX data obtained from Engine Management System (EMS) and the amount of NH3. Therefore, in order to decide the amount of injection quantity, the NO/NOX ratio from the engine out NOX should be considered in order to minimize NH3 slip while maximizing NOX reduction. Experiments are conducted with a 2.2-liter diesel engine for passenger vehicles with Diesel Oxidation Catalyst (DOC) and Diesel Particle Filter (DPF). Real time control, using Pulse Width Modulation (PWM) duty ratio for dosing module and supply module, is performed by real time computer with its injection control algorithm developed in the Matlab Simulink environment.
Technical Paper

Development of the Unburned Exhaust Gas Ignition (UEGI) Technology to Achieve Fast Light-Off of Catalysts and Emissions Reduction

2002-10-21
2002-01-2899
UEGI(Unburned Exhaust Gas Ignition) is expected to help faster warm-up of a close-coupled catalytic converter (CCC) by igniting the unburned exhaust mixture using two glow plugs installed upstream of the catalyst. In this study, a control module and an algorithm for the UEGI technology was developed. In addition, a hydrocarbon adsorber was tested with the UEGI system for more effective reduction of HC emission during the cold start. The control module changes I/O signals of the ECU, to control ignition on/off, glow plug on/off, and A/F ratios during cold start. Because the system is designed to be applicable to conventional vehicles, its repeatability, stability, and precision of control were tested and analyzed on an engine test bench and vehicle test. Experimental results show that the CCC reaches the light-off temperature faster compared with the baseline exhaust system. Therefore HC and CO emissions are reduced significantly during the cold start.
Technical Paper

An Alternative Method for Fast Light-Off of Catalysts - Cranking Exhaust Gas Ignition

2002-05-06
2002-01-1678
Recent stringent emission regulations need fast light-off of catalysts to reduce HC and CO emissions during cold start. Cranking Exhaust Gas Ignition (CEGI) system, developed in this study, cuts off the ignition signals for 10 seconds during the cranking period for the unburned mixture to bypass the combustion chamber and flow through the exhaust manifold. When the unburned mixture reaches two glowplugs mounted upstream of the catalyst, it is ignited and releases thermal energy to warmup the catalyst. Results from the vehicle tests showed that the catalyst reaches the light-off temperature within 20 seconds and the reduction of exhaust emission was 47.7% for THC and 88.6% for CO in the cold-transient phase of the FTP-75 mode.
X