Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Entropy Method for Analyzing Heterogeneity Degree in Diffusion Process (Basic Concept and Application Results for Microscopic Structure in Sprays)

2004-06-08
2004-01-1964
Investigation on diffusion process is required in variety of fields such as chemical reaction, combustion, and environmental studies. However, there is no appropriate index for analyzing degree of homogeneity and scales of the clouds in diffusion field. This paper presents comprehensive work of the author on Entropic Method for determining the homogeneity degree and the scale of the heterogeneous clouds: in this paper large scale cluster of fluids, for example fuel vapor (or air), is termed “cloud”. A method for determining a mean effective diffusion-coefficient from the pictures is also discussed. The entropy analysis is based on the concept of statistical entropy, whose value increases with the progress of diffusion process. The paper explains the methodology and shows some examples revealed by the analysis.
Technical Paper

Combustion Similarity for Different Size Diesel Engines: Theoretical Prediction and Experimental Results

1992-02-01
920465
This paper presents a theoretical and experimental study on the possibility of combustion similarity in differently sized diesel engines. Combustion similarity means that the flow pattern and flame distribution develop similarly in differently sized engines. The study contributes to an understanding and correlating of data which are presently limited to specific engine designs. The theoretical consideration shows the possibility of combustion similarity, and the similarity conditions were identified. To verify the theory, a comparison of experimental data from real engines was performed; and a comparison of results of a three dimensional computer simulation for different engine sizes was also attempted. The results showed good agreement with the theoretical predictions. THE PURPOSE of this research is to determine the possibility of the existence of combustion similarity in differently sized diesel engines, and to propose conditions for realizing model experiments.
X