Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Experimental and Numerical Momentum Flux Analysis of Jets from a Hydrogen Injector

2024-04-09
2024-01-2616
The use of hydrogen in internal combustion engines is an effective approach to significantly support the reduction of CO2 emissions from the transportation sector using technically affordable solutions. The use of direct injection is the most promising approach to fully exploit hydrogen potential as a clean fuel, while preserving targets in terms of power density and emissions. In this frame, the development of an effective combustion system largely relies on the hydrogen-air mixture formation process, so to adequately control the charge stratification to mitigate pre-ignitions and knock and to minimize NOx formation. Hence, improving capabilities of designing a correct gas jet-air interaction is of paramount importance. In this paper the analysis of the evolution of a high-pressure gas jet produced by a single-hole prototype injector operated with different pressure ratios is presented.
Technical Paper

Experimental and Numerical Analysis of a Swirled Fuel Atomizer for an Aftertreatment Diesel Burner

2023-08-28
2023-24-0106
Emission legislation for light and heavy duty vehicles is requiring a drastic reduction of exhaust pollutants from internal combustion engines (ICE). Achieving a quick heating-up of the catalyst is of paramount importance to cut down cold start emissions and meet current and new regulation requirements. This paper describes the development and the basic characteristics of a novel burner for diesel engines exhaust systems designed for being activated immediately at engine cold start or during vehicle cruise. The burner is comprised of a swirled fuel dosing system, an air system, and an ignition device. The main design characteristics are presented, with a detailed description of the atomization, air-fuel interaction and mixture formation processes. An atomizer prototype has been extensively analyzed and tested in various conditions, to characterize the resulting fuel spray under cold-start and ambient operating conditions.
Technical Paper

Preliminary Assessment of Hydrogen Direct Injection Potentials and Challenges through a Joint Experimental and Numerical Characterization of High-Pressure Gas Jets

2022-09-16
2022-24-0014
The interest towards hydrogen fueling in internal combustion engines (ICEs) is rapidly growing, due to its potential impact on the reduction of the carbon footprint of the road transportation sector in a short-term scenario. While the conversion of the existing fleet to a battery-electric counterpart is highly debated in terms of both technical feasibility and life-cycle-based environmental impact, automotive researchers and technicians are exploring other solutions to reduce, if not to nullify, the carbon footprint of the existing ICE fleet. Indeed, ICE conversion to “green” fuels is seen as a promising short-term solution which does not require massive changes in powertrain production and end-of-life waste management. To better evaluate potentials and challenges of hydrogen fueling, a clear understanding of fuel injection and mixture formation prior to combustion is mandatory.
Technical Paper

Numerical Simulation of Non-reacting Ducted Fuel Injection by Means of the Diffuse-Interface Σ-Y Atomization Model

2022-03-29
2022-01-0491
Ducted Fuel Injection (DFI) is a new technology recently developed with the aim of reducing soot emission formation in diesel compression ignition engines. DFI concept consists of the injection of fuel spray through a small duct located downstream of the injector nozzle leaving a certain gap, the so-called Stand-off distance. Currently, CFD modelers have investigated its performance using classical spray modeling techniques such as the Discrete Drops Method (DDM). However, as discussed in the literature, this type of technique is inappropriate when applied to dense jets as those occurring in diesel sprays, especially in the near-nozzle region (where the duct is placed). Therefore, considering a more appropriate modeling technique for such a problem is mandatory. In this research work, an Eulerian single-fluid diffuse-interface model called Σ-Y and implemented in the OpenFOAM framework is utilized for the simulation of non-reacting conditions.
Technical Paper

A Dynamic Test Bench for the Assessment of Common Rail Fuel Injection Systems Impact on CO2 Emissions over the WLTP Cycle

2019-04-02
2019-01-0292
The internal combustion engine technological development is today driven by the pollutants and carbon dioxide (CO2) emission reduction targets imposed by law. The request of lowering CO2 emission reflected in a push towards the improvement of engine efficiency, without sacrificing performances and drivability. The latest generations of Diesel engines for passenger cars are characterized by increasing injection pressure levels (250 MPa for the current production). Enhancing the injection pressure has the drawback of increasing the energy needed to pressurize the fuel and thus the high-pressure fuel pump energy request. A small but not negligible quantity of fuel has to be burned in order to provide this energy, generating a contribution in CO2 emission. In this frame, the injector back-flow represents a significant energy loss for the fuel injection system and for the whole engine.
Technical Paper

Experimental Analysis of Fuel and Injector Body Temperature Effect on the Hydraulic Behavior of Latest Generation Common Rail Injection Systems

2018-04-03
2018-01-0282
The present paper describes the effect of thermal conditions on the hydraulic behavior of Diesel common rail injectors, with a particular focus on low temperatures for fuel and injector body. The actual injection system thermal state can significantly influence both the injected quantity and the injection shape, requiring proper amendments to the base engine calibration in order to preserve the combustion efficiency and pollutant emissions levels. In particular, the introduction of the RDE (Real Driving Emission) test cycle widens the effective ambient temperature range for the homologation cycle, this way stressing the importance of the thermal effects analysis. An experimental test bench was developed in order to characterize the injector in an engine-like configuration, i.e. fuel pump, piping, common rail, pressure control system and injectors.
Technical Paper

Momentum Flux Measurement on Single-Hole GDI Injector under Flash-Boiling Condition

2015-09-06
2015-24-2480
Direct Injection technology for Spark Ignition engines is currently undergoing a significant development process in order to achieve its complete potential in terms of fuel conversion efficiency, while preserving the ability to achieve future, stringent emission limits. In this process, improving the fuel spray analysis capabilities is of primary importance. Among the available experimental techniques, the momentum flux measurement is one of the most interesting approaches as it allows a direct measurement of the spray-air mixing potential and hence it is currently considered an interesting complement to spray imaging and Phase Doppler Anemometry. The aim of the present paper is to investigate the fuel spray evolution when it undergoes flash boiling, a peculiar flow condition occurring when the ambient pressure in which the spray evolves is below the saturation pressure of the injected fluid.
Technical Paper

CFD Analysis of Injection Timing Influence on Mixture Preparation in a PFI Motorcycle Engine

2006-11-13
2006-32-0022
The efficiency of engine operations, i.e. cold start, transient response and operating at idle, depends on the capability of the injection fuel system to promote a homogeneous mixture formation through an efficient interaction with engine fluid dynamics and geometry. The paper presents the development and the application of a methodology for running a CFD PFI engine simulation. A preliminary assessment of the wall-film and droplet-wall interaction sub models has been carried out in order to validate the methodology. Then a three-step numerical procedure has been adopted. The first two steps are aimed to properly initialize the secondary breakup model depending on the type of injector installed on board in order to achieve accurate predictions of spray characteristics.
Technical Paper

An Integrated Experimental-Numerical Study of HSDI Diesel Injection System and Spray Dynamics

2006-04-03
2006-01-1389
This paper presents a complete numerical and experimental characterisation of the transient diesel spray of a modern 5-holes high pressure electronic controlled injector performed in a constant volume pressurised vessel. The experimental analysis has been carried out using a self-developed injection rate measuring device, a visualisation rig based on a Nd-Yag pulsed laser and a synchronized CCD camera to measure spray penetration and spray cone angles and a PDA equipment to measure droplets size and velocity. The numerical analysis has been carried out by statically coupling a 1D model of the common rail injection system to a full 3D computation of both gas and fuel spray dynamics. The 1D injection system model has been developed in the AVL HYDSIM environment and the reliability of the model is demonstrated by comparing the numerical results with the experimental data. The multidimensional numerical simulation tool is a modified version of the KIVA-3V code.
Technical Paper

Analysis Method for the Spray Characteristics of a GDI System with High Pressure Modulation

2000-03-06
2000-01-1043
The control of mixture formation by gasoline direct injection requires the continuous adaptation of the fuel spray characteristics in a broad range of load and speed. This paper presents an experimental analysis of the main spray characteristics for a jet generated by a GDI system with high pressure modulation (Zwickau Ram Tuned). The experimental method is based on spray visualization by a laser sheet technique. The radiation of a Nd-Yag pulsed laser is scattered by the spray droplets laying on the lighted plane and collected by a CCD camera, being fed to a frame grabber. Time and space related structure can be analyzed in any cross section of interest, giving information about jet form and penetration length. In particular, a suitable elaboration (Presence Probability Imaging) of several image series, collected at different delay times after injection start, supplies information about the probability of presence in space of spray liquid fractions.
Technical Paper

Experimental Comparison Between Conventional and Bio-derived Fuels Sprays from a Common Rail Injection System

2000-03-06
2000-01-1252
In the present study, a commercial high pressure, common rail injection system for automotive DI diesel engines was fed with a conventional diesel fuel, a bio-derived fuel and a blend of them. The comparison of spray characteristics was carried out in terms of tip penetration and cone angles; the fuel spray, generated by rail pressures ranging from 60 MPa to 120 MPa, developed in an atmospheric chamber. The experimental set-up is based on a laser sheet technique. The radiation scattered by the spray, generated by a Nd-Yag pulsed laser, is collected by a CCD camera and fed to a frame grabber. A suitably set-up automatic image analysis process allows not only to determine the spray average development in terms of its geometric characteristics, but also to analyse in detail its internal structure. In particular, a suitable elaboration allowed the evaluation of the probability of presence in space of spray liquid fractions.
X