Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Evaluation of Transient Refrigerant Migration Modeling Approach on Automotive Air Conditioning Systems

2011-04-12
2011-01-0649
Automotive air conditioning systems are subject to constantly changing operation conditions and steady state simulations are not sufficient to describe the actual performance. The refrigerant mass migration during transient events such as clutch-cycling or start-up has a direct impact on the transient performance. It is therefore necessary to develop simulation tools which can accurately predict the migration of the refrigerant mass. To this end a dynamic model of an automotive air conditioning system is presented in this paper using a switched modeling framework. Model validation against experimental results demonstrates that the developed modeling approach is able to describe the transient behaviors of the system, and also predict the refrigerant mass migration among system components during compressor shut-down and start-up (stop-start) cycling operations.
Journal Article

A Urea Decomposition Modeling Framework for SCR Systems

2009-04-20
2009-01-1269
Selective catalytic reduction (SCR) is allowing diesel engines to reach NOx emission levels which are unachievable in-cylinder. This technology is still evolving, and new catalyst formulations which provide higher performance and greater durability continue to be developed. Usually, their performance is measured on a flow reactor using ammonia as the reductant. However, in mobile applications a urea-water solution is used instead, and urea decomposition by thermolysis and hydrolysis provides the required ammonia to the catalyst. It is well known that urea decomposition is incomplete by the inlet face of the converter, and this is at least one reason why on-engine performance is generally lower than would be expected from reactor tests. Previous modeling of urea-water droplets has focused on developing detailed sub-models that can be implemented into computational fluid dynamics (CFD) codes.
X