Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Aluminum Subframe Design for Crash Energy Management

2004-03-08
2004-01-1775
The engine subframe (cradle) is an important contributor to crash energy management in frontal impact for automotive vehicles. Subframe design can enhance vehicle crash performance through energy management. In addition to energy management targets, the subframe must meet stiffness, durability and other vehicle engineering requirements. Various subframe concepts are reviewed. Their design intents and vehicle performance are discussed. A development process of an aluminum subframe is then presented which details the subframe design as an energy absorbing component for frontal impacts. The architecture of the subframe is developed based on overall functionality requirements and package constraints. The geometry of the subframe is first designed to accommodate engine mounts and suspension support locations. The subframe member's shape, orientation, and location are then refined to accommodate the subframe-to-body connection requirements.
Technical Paper

Aluminum Vehicle Side Impact Design, Test and CAE

2002-03-04
2002-01-0249
Ford designed and built a midsize family sedan for the PNGV (Partnership for a New Generation of Vehicle). The side impact performance of the aluminum vehicle and the current CAE capability was studied. The vehicle was tested according to the specifications of FMVSS 214. The results show the vehicle meet the federal safety requirements. The impact performances of the front and rear dummies were comparable to those of the steel counterpart. CAE analysis was conducted to develop the body component design and to predict the structural and dummy responses. The results show that without modeling of the joint (rivet and weld) separation, the accuracy of the CAE crash analysis for this aluminum vehicle was inadequate. When empirical separation criteria were incorporated to model the joint, analysis results correlated with the test. Further development of robust modeling methods for joint separation is needed to improve the prediction of aluminum structure crash responses.
X