Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Preliminary CFD Investigation of In-Cylinder Stratified EGR for Spark Ignition Engines

2002-05-06
2002-01-1734
High exhaust gas recirculation (EGR) tolerance is always pursued not only for its advantages of the pumping loss reduction and fuel economy benefit, but also for stringent emission requirements by using conventional three-way catalytic converter (TWC) instead of costly NOx trap. How to keep fresh charge and EGR separated in the cylinder of a conventional four valve gasoline engine is a critical challenge. This work establishes advanced user subroutines and overall simulation strategies to model engine in-cylinder turbulent flow, temperature, pressure, and EGR concentration fields and to simulate EGR stratification process in a typical pent-roof gasoline engine cylinder during intake and compression strokes.
Technical Paper

Numerical Study on Swirl-Type High-Dilution Stratified EGR Combustion System

2000-06-19
2000-01-1949
High-dilution stratified EGR combustion system operating at stoichiometric air-fuel ratio (A/F) could offer significant fuel economy saving comparable to the lean burn or stratified charge direct injection SI engines, while still complies with stringent emission standards by using the conventional three-way catalytic converter. The most critical challenge is to keep substantial separation between EGR gas and air-fuel mixture, or to minimize the mixing between these two zones to an acceptable level for stable and complete combustion. Swirl-type stratified EGR and air-fuel flow structure is considered desirable for this purpose, because the circular engine cylinder tends to preserve the swirl motion and the axial piston movement has minimal effect on the flow structure swirling about the same axis. In this study, KIVA3V was used to simulate mixing and combustion processes in a typical pent-roof gasoline engine cylinder during compression and expansion strokes.
X