Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Measurement of Dioxin and Furan Emissions during Transient and Multi-Mode Engine Operation

2011-04-12
2011-01-1158
This study analyzed the impact of transient and multi-mode engine conditions on emissions of dioxins and furans from a variety of diesel aftertreatment configurations. Exhaust aftertreatment systems included combinations of diesel oxidation catalyst, diesel particulate filter, and either Cu/zeolite or Fe/zeolite selective catalytic reduction catalyst. EPA method TO-9A was modified for proportional exhaust gas sampling, whereas EPA method 0023A was modified for raw exhaust gas sampling. Dioxin and furan emissions were first measured with modified method TO-9A during Federal Test Procedure transient cycles, but no toxic dioxins or furans were detected. Measurements were then taken with modified method 0023A during Ramped Mode Cycles-Supplemental Emissions Test experiments. Because more rigorous pre-cleaning and sample extraction procedures were used with this method and lower detection limits were achieved by the analytical laboratory, some dioxin and furan congeners were detected.
Technical Paper

Significance of Fuel Sulfur Content and Dilution Conditions on Particle Emissions from a Heavily-Used Diesel Engine During Transient Operation

2007-04-16
2007-01-0319
The effects of fuel sulfur content and dilution conditions on diesel engine PM number emissions have been researched extensively through steady state testing. Most results show that the concentration of nuclei-mode particles emitted increases with fuel sulfur content. A few studies further observed that fuel sulfur content has little effect on the emissions of heavily-used engines. It has also been found that primary dilution conditions can have a large impact on the size and number distribution of the nuclei-mode particles. These effects, however, have not yet been fully understood through transient testing, the method used by governments worldwide to certify engines and regulate emissions, and a means of experimentation which generates realistic conditions of on-road vehicles by varying the load and speed of the engine.
Technical Paper

Diesel Particulate Filters: Trends and Implications of Particle Size Distribution Measurement

2003-03-03
2003-01-0046
In order to comply with tightening environmental standards, diesel particulate filters will be used for engine particle emission control. A well-defined testing method is needed to characterize and evaluate the diesel particulate filters. A previously developed testing method yielded unexpected results which were believed to be caused by dilution air contamination and particle formation downstream of the filters. In this study, the testing method has been modified in order to address these issues. Various wall-flow diesel particulate filters of fibrous and porous materials were tested using the modified method in this study. The results were compared with the previous data to evaluate the level of improvement. The results were also analyzed using particle size distributions and filtration mechanisms described by various theories. Particle size distributions demonstrated significant improvement of the modified testing method.
X