Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Improving Vehicle Stability and Comfort through Active Corner Positioning

2024-04-09
2024-01-2552
The emergence of new electric vehicle (EV) corner concepts with in-wheel motors offers numerous opportunities to improve handling, comfort, and stability. This study investigates the potential of controlling the vehicle's corner positioning by changing wheel toe and camber angles. A high-fidelity simulation environment was used to evaluate the proposed solution. The effects of the placement of the corresponding actuators and the actuation point on the force required during cornering were investigated. The results demonstrate that the toe angle, compared to the camber angle, offers more effect for improving the vehicle dynamics. The developed direct yaw rate control with four toe actuators improves stability, has a positive effect on comfort, and contributes to the development of new active corner architectures for electric and automated vehicles.
Technical Paper

Methodologic Assessment of Brake-by-Wire System Modelling with Regard to Accuracy, Model Complexity and Optimization Efforts

2023-04-11
2023-01-0666
Brake-by-wire systems are an innovative and important component of modern high-performance and also electrified vehicles. Due to their decoupled architecture, they enable driver-independent vehicle dynamics control (e.g., brake torque blending) and easy integration of assistance functionalities (e.g. Emergency Brake Assist (EBA)). On the other hand, the development of these functions can cause high costs and development effort, and testing can be critical in case of improper gain tuning. Therefore, already in the concept phase, a large part of the testing is shifted to virtual environments and simulations that allow safe and reproducible experiments without damage. Therefore, suitable and reliable models are needed to represent reality as accurately as possible. This paper deals with the modelling of a purely electrohydraulic brake-by-wire system and a hybrid system with electrohydraulic brakes on the front axle and electromechanical brakes on the rear axle.
Technical Paper

Road Parameter Estimation with Drone-Vehicle Communication

2023-04-11
2023-01-0664
The presented study is dedicated to the technology supporting vehicle state estimation and motion control with a concept drone, which helps the vehicle in sensing the surroundings and driving conditions. This concept allows also extending the functionality of the sensors mounted on the vehicle by replacing or including additional parameter observation channels. The paper discusses the feasibility of such a drone-vehicle interaction as well as demonstrates several design configurations. In this regard, the paper presents a general description of the proposed drone system that assists the vehicle and describes an experiment in measuring the profile of the road with a range sensor. The results obtained in the experiment are described in terms of the accuracy to be achieved using the drone and are compared with other studies, which use the methods of estimation from the sensors mounted on the vehicle.
Journal Article

Towards Brand-Independent Architectures, Components and Systems for Next Generation Electrified Vehicles Optimised for the Infrastructure

2022-03-29
2022-01-0918
E-mobility is a game changer for the automotive domain. It promises significant reduction in terms of complexity and in terms of local emissions. With falling prices and recent technological advances, the second generation of electric vehicles (EVs) that is now in production makes electromobility an affordable and viable option for more and more transport mission (people, freight). Still, major challenges for large scale deployment remain. They include higher maturity with respect to performance (e.g., range, interaction with the grid), development efficiency (e.g., time-to-market), or production costs. Additionally, an important market transformation currently occurs with the co-development of automated driving functions, connectivity, mobility-as-a-service. New opportunities arise to customize road transportation systems toward application-driven, user-centric smart mobility solutions.
Technical Paper

Electric Vehicle Corner Architecture: Driving Comfort Evaluation Using Objective Metrics

2022-03-29
2022-01-0921
The presented paper is dedicated to the driving comfort evaluation in the case of the electric vehicle architecture with four independent wheel corners equipped with in-wheel motors (IWMs). The analysis of recent design trends for electrified road vehicles indicates that a higher degree of integration between powertrain and chassis and the shift towards a corner-based architecture promises improved energy efficiency and safety performances. However, an in-wheel-mounted electric motor noticeable increases unsprung vehicle mass, leading to some undesirable impact on chassis loads and driving comfort. As a countermeasure, a possible solution lies in integrated active corner systems, which are not limited by traditional active suspension, steer-by-wire and brake-by-wire actuators. However, it can also include actuators influencing the wheel positioning through the active camber and toe angle control.
Journal Article

Fail-Safe Study on Brake Blending Control

2021-04-06
2021-01-0983
Battery electric vehicles (BEV) share the ability of regenerative braking since they are equipped with two independent types of deceleration devices, namely the electric motor working as a generator and the friction brakes. Correct interaction of these systems in terms of driving safety and energy efficiency is a function of the Brake Blending Control. Individual electric motors for each wheel and a decoupled brake system provides the Brake Blending with a high design flexibility that allows significant advantages regarding energy consumption, brake performance, and driving comfort. This paper is focusing on the fail behaviour and analyses the robustness and redundancy abilities of such systems against various error scenarios. For this purposes, a distributed x-in-the-loop environment, consisting of dedicated simulation and hardware testing components, is introduced.
Journal Article

E-Mobility-Opportunities and Challenges of Integrated Corner Solutions

2021-04-06
2021-01-0984
E-mobility is a game changer for the automotive domain. It promises significant reduction in terms of complexity and in terms of local emissions. With falling prices and recent technological advances, the second generation of electric vehicles (EVs) that is now in production makes electromobility an affordable and viable option for more and more transport mission (people, freight). Current e-vehicle platforms still present architectural similarities with respect to combustion engine vehicle (e.g., centralized motor). Target of the European project EVC1000 is to introduce corner solutions with in-wheel motors supported by electrified chassis components (brake-by-wire, active suspension) and advanced control strategies for full potential exploitation. Especially, it is expected that this solution will provide more architectural freedom toward “design-for-purpose” vehicles built for dedicated usage models, further providing higher performances.
Journal Article

ERRATUM

2017-09-17
2017-01-2520.1
This is a errata for 2017-01-2520.
Journal Article

Investigating the Parameterization of Dugoff Tire Model Using Experimental Tire-Ice Data

2016-09-27
2016-01-8039
Tire modeling plays an important role in the development of an Active Vehicle Safety System. As part of a larger project that aims at developing an integrated chassis control system, this study investigates the performance of a 19” all-season tire on ice for a sport utility vehicle. A design of experiment has been formulated to quantify the effect of operational parameters, specifically: wheel slip, normal load, and inflation pressure on the tire tractive performance. The experimental work was conducted on the Terramechanics Rig in the Advanced Vehicle Dynamics Laboratory at Virginia Tech. The paper investigates an approach for the parameterization of the Dugoff tire model based on the experimental data collected. Compared to other models, this model is attractive in terms of its simplicity, low number of parameters, and easy implementation for real-time applications.
X