Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Fuel Cell Hybrid Electric Vehicle: Validated Fuel Cell and Battery Pack Model to Enhance Reliability in Performance Predictions

2024-04-09
2024-01-2188
In the face of the pressing climate crisis, a pivotal shift towards sustainability is imperative, particularly in the transportation sector, which contributed to nearly 22% of global Greenhouse Gas emissions in 2021. In this context, diversifying energy sources becomes paramount to prevent the collapse of sustainable infrastructure and harness the advantages of various technologies, such as Fuel Cell (FC) Hybrid Electric Vehicles. These vehicles feature powertrains comprising hydrogen FC stacks and battery packs, offering extended mileage, swift refueling times, and rapid dynamic responses. However, realizing these benefits hinges upon the adoption of a rigorously validated simulation platform capable of accurately forecasting vehicle performance across diverse design configurations and efficient Energy Management Strategies. Our study introduces a comprehensive microcar hybrid prototype model, encompassing all subsystems and auxiliaries.
Technical Paper

Fuel Cell Hybrid Electric Vehicle Control: Driving Pattern Recognition Techniques to Improve Vehicle Energy Efficiency

2023-08-28
2023-24-0147
Hydrogen technologies have been widely recognized as effective means to reduce Greenhouse Gases emissions, a crucial issue to target a Carbon-free world aimed by the European Green Deal. Within the road transport sector, electric vehicles with a hybrid powertrain, including battery packs and hydrogen Fuel Cells (FCs), are gaining importance owing to their adaptability to a wide variety of applications, high driving mileages and short refueling times. The control strategy is crucial to achieve a proper management of the energy flows, to maximize energy efficiency and maximize components durability and state of health. This work is focused on the design of an integrated Energy Management Strategy (EMS), whose aim is to minimize the hydrogen consumption, by operating the FC mainly in the high efficiency region while the battery pack works according to a charge sustaining mode. The proposed EMS is composed of a control algorithm and a supervisor.
Technical Paper

Assessment of Hybrid Commercial Fleet Performance: Effects of Advanced Control Strategies for Different Geographical Sites

2022-09-16
2022-24-0023
The international community is making significant efforts to face climate changes related to substantial greenhouse gas (GHG) emissions. Among all the sectors, transport is responsible for almost a quarter of global GHG emissions, 72% of which is imputable to road vehicles. It’s also expected that, without significant measures, these emissions may grow at a faster rate than other sectors. Furthermore, rising fuel costs and availability concerns have made the electrification of road transportation an attractive option to reduce oil dependency. However, this solution produces an electricity demand increase, causing significant overload conditions that could affect the reliability of the distribution sector.
Technical Paper

Diesel Engine Biofuelling: Effects of Ash on the Behavior of the Diesel Particulate Filter

2013-09-08
2013-24-0165
The use of biodiesels is an effective way to limit greenhouse emissions and partly limit the dependence on fossil primary sources. Biodiesel fuels also show interesting features in terms of PM-NOx emissions trade-off that appears more favorable toward an optimized control of the Diesel Particulate Filter (DPF). In fact, the DPF, which is the assessed aftertreatment technology to reduce PM emissions below the limits, suffers from fuel consumption penalization or excessive exhaust system backpressure, as a function of the frequency of the regeneration process. On the other side, issues such as the impact of the higher ash content of biodiesel on the DPF performance have also to be better understood. In the given scenario, an experimental study on a DEUTZ 4L off-road Diesel engine coupled to a DOC-DPF (Diesel Oxidation Catalyst-Diesel Particulate Filter) system is proposed in this paper.
Technical Paper

Effects of Biodiesel Distillation Process of Waste Cooking Oil Blends on DPF Behavior

2012-09-10
2012-01-1663
The use of biodiesel has been widely accepted as an effective solution to reduce greenhouse emissions. The high potential of biodiesel in terms of PM emission reduction may represent an additional motivation for its wide use. This potential is related to the oxygenated nature of biodiesel, as well as its lower PAH and S, which leads, in general, to lower PM emissions as well as equal or slightly higher NOx emissions. According to these observations a different behavior of the Aftertreatment System (AS), especially as far as control issues of the Diesel Particulate Filter are concerned is also expected. The competition with the food sector is currently under debate, thus, besides second generation biofuels (e.g. from algae), the transesterification of Waste Cooking Oil (WCO) is another option, however needing further insight.
X