Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Turbulent Flow Metal Substrates: A Way to Address Cold Start CO Emissions and to Optimize Catalyst Loading

2006-04-03
2006-01-1523
Modern Diesel Engines equipped with Common-Rail Direct Injection and EGR are characterized by an increasingly high combustion efficiency. Consequently the exhaust gas temperature, especially during a cold start, is significantly reduced compared to typical values measured in previous engine generations. This leads to a potential problem with CO emission limit compliance. The present paper deals with an experimental investigation of turbulent-flow metal substrates, carried out on a vehicle roller bench using a production 1.3 Liter diesel engine equipped passenger car. The tested metal supported catalysts proved to yield extremely high conversion rates both during cold start and in warm operation phase. The improved mass transfer efficiency of the advanced metal substrates is related on one hand to the optimized coating technology and, on the other hand, to the enhanced flow performance in the single converter channels which is caused by structured metal foils.
Technical Paper

Optimisation Development of Advanced Exhaust Gas After-treatment Systems for Automotive Applications

2005-05-11
2005-01-2157
Future emission legislation can be met through substantial improvement in the effectiveness of the exhaust gas after-treatment system, the engine and the engine management system. For the catalytic converter, differentiation is necessary between the cold start behavior and the effectiveness at operating temperature. To be catalytically effective, a converter must be heated by the exhaust gas up to its light-off temperature. The major influential parameter for the light-off still is the supply of heat from the exhaust gas. Modification of the cold start calibration of engine control such as spark retard or increased idle speed can increase the temperature level of the exhaust gas. One further possibility is represented by a reduction of the critical mass ahead of the catalyst (exhaust manifold and pipe). Nevertheless the best measure to obtain optimal cold start effectiveness still seems to be locating the converter close to the engine.
Technical Paper

Backpressure Optimized Metal Supported Close Coupled PE Catalyst - First Application on a Maserati Powertrain

2005-04-11
2005-01-1105
Future stringent emission limits both in the European Community and USA require continuously increased conversion efficiency of exhaust after-treatment systems. Besides the obvious targets of fastest light-off performance, overall conversion efficiency and durability, catalytic converters for maximum output engines require highly optimized flow properties as well, in order to create minimum exhaust backpressure for low fuel consumption. This work deals with the design, development and serial introduction of a close coupled main catalyst system using the innovative technology of Perforated Foils (PE). By means of PE-technology, channel-to-channel gas mixing within the metal substrate could be achieved leading to dramatically reduced backpressure values compared with the conventional design.
X