Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Development of New Hydrogen Fueling Method for Fuel Cell Motorcycle

2017-03-28
2017-01-1184
A new hydrogen fueling protocol named MC Formula Moto was developed for fuel cell motorcycles (FCM) with a smaller hydrogen storage capacity than those of light duty FC vehicles (FCV) currently covered in the SAE J2601 standard (over than 2kg storage). Building on the MC Formula based protocol from the 2016 SAE J2601 standard, numerous new techniques were developed and tested to accommodate the smaller storage capacity: an initial pressure estimation using the connection pulse, a fueling time counter which begins the main fueling time prior to the connection pulse, a pressure ramp rate fallback control, and other techniques. The MC Formula Moto fueling protocol has the potential to be implemented at current hydrogen stations intended for fueling of FCVs using protocols such as SAE J2601. This will allow FCMs to use the existing and rapidly growing hydrogen infrastructure, precluding the need for exclusive dispensers or stations.
Technical Paper

Application of MC Method-Based H2 Fueling

2012-04-16
2012-01-1223
To address challenges related to refueling with compressed hydrogen, a simple, analytical method has been developed that allows a hydrogen station to directly and accurately calculate an end-of-fill temperature in a hydrogen tank and thereby maximize the fill quantity and minimize the refueling time. This is referred to as the MC Fueling Method, where MC represents total heat capacity. The MC Method incorporates a set of thermodynamic parameters for the tank system that are used by the station in a simple analytical equation along with measured values of dispensed hydrogen temperature and pressure at the station. These parameters can be communicated to the hydrogen station either directly from the vehicle or from a database that is accessible by the station. Because the MC Method is based on direct measurements of actual thermodynamic conditions at the station, and quantified thermodynamic behavior of the tank system, highly accurate tank filling results can be achieved.
X