Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Simulation Research on Engine Speed Fluctuation Suppression Based on Engine Torque Observer by Using a Flywheel ISG

2019-04-02
2019-01-0787
This paper conducts simulation research on engine torque ripple suppression based on the engine torque observer by using a flywheel-ISG (integrated starter generator). Usually, engine torque can be suppressed by using a passive method such as by installing a flywheel or torsional damper. However, failure problems arise in hybrid system because of different mechanical characters of the engine and its co-axial ISG motor. On the prototype test bench, the flywheel of the engine has been removed and replaced by an ISG rotor, namely FISG (flywheel ISG). Besides, the crank and FISG rotor are directly connected, which means no dampers or clutches are installed. If the engine torque ripples can be suppressed by the same level as the flywheel and damper by FISG active torque compensation, the new system can be more compact and economical. Simulation efforts are made to verify its feasibility. Firstly, based on the experimental test bench, which is currently under construction.
Technical Paper

Fuel Consumption Analysis and Optimizing of a Heavy Duty Dual Motor Coaxial Series-Parallel Hybrid Lorry under C-WTVC

2017-10-08
2017-01-2359
Energy saving is becoming one of the most important issues for the next generation of commercial vehicles. The fuel consumption limits for commercial vehicles in China have stepped into the third stage, which is a great challenge for heavy duty commercial vehicles. Hybrid technology provides a promising method to solve this problem, of which the dual motor coaxial series parallel configuration is one of the best options. Compared with parallel configuration, the powertrain can not only operate in pure electric or parallel mode, but also can operate in series mode, which shows better flexibility. In this paper, regulations on test cycle, fuel consumption limits and calculation method of the third stage will be introduced in detail. Then, the quasi-static models of the coaxial series parallel powertrain with/without gearbox under C-WTVC (China worldwide transient vehicle cycle) are built. The control strategies are designed based on engine and motor performance.
Technical Paper

Energy Management and Design Optimization for a Power-Split, Heavy-Duty Truck

2017-10-08
2017-01-2450
Power-split configuration is highlighted as the most popular concept for full hybrid electric vehicles (HEV). However, the energy management and design of power-split heavy duty truck under Chinese driving conditions still need to be investigated. In this paper, the parametric design, a rule-based control strategy and an equivalent consumption minimization strategy (ECMS) for the power-split heavy duty truck are presented. Besides, the influence of a penalty factor also discussed under ECMS algorithm. Meanwhile, two different methods to search the engine operation point have been proposed and the reason of different economy performance is presented by using energy flow chart. And the simulation results show both fuel consumption can satisfy the second phase fuel consumption standard and the third phase fuel consumption standard which will be implemented in 2020, under C-WTVC (Chinese-World Transient Vehicle Cycle).
Technical Paper

Simulations on Special Structure ISG Motor Used for Hybrid Electrical Vehicles Aimed at Active Damping

2017-03-28
2017-01-1123
Engine torque fluctuation is a great threat to vehicle comfort and durability. Former researches tried to solve this problem by introducing active damping system, which means the motor is controlled to produce torque ripple with just the opposite phase to that of the engine. By this means, the torque fluctuation produced by the motor and the engine can be reduced. In this paper, a new method is raised. An attempt is proposed by changing the traditional structure of the motor, making it produce ripple torque by itself instead of controlling the motor. In this way a special used ISG (Integrated Starter Generator) motor for HEV (Hybrid Electrical Vehicles) is made to achieve active damping. In order to study the possibility, a simulation, which focus on the motor instead of the whole system, is developed and series-parallel configuration is used in this simulation. As for the motor that used in this paper, four kinds of motors have been investigated and compared.
Technical Paper

Performance and Emission Optimization of Pilot Ignited Natural Gas Diesel Engine with Single and Dual Injection Pilot Strategies and MBC toolkit

2015-09-01
2015-01-1985
Pilot ignited natural gas diesel engine (PINGDE) was demonstrated to achieve low NOx emission, high fuel economy and low fuel cost. Despite of that, PINGDE is still confronted with problems such as high mechanical and thermal stress under heavy load, high CO and THC emission under small load and a trade-off relationship between NOx emission and fuel efficiency for whole operating points. In this study, tests were conducted to explore how three main variables including pilot injection timing, pilot diesel substitution rate and two kinds of pilot injection strategies influence the performance and emission of the modified WP10 engine. Two pilot injection strategies including pilot diesel injected once and twice were proposed and potential of promoting fuel economy and saving fuel cost was demonstrated. Moreover, a numerical engine model is established to optimize engine performance and emission with the help of MBC toolkit through limited experiments.
Technical Paper

Cylinder by cylinder indicated torque and combustion feature estimation based on engine instantaneous speed and one cylinder pressure through error similarity analysis

2015-04-14
2015-01-1249
There is increasing demand for engine diagnostic and control with in-cylinder pressure signal. However, the application of cylinder pressure sensors are restricted by the high cost of the sensor. Another possible way for engine combustion state estimation is by processing of instantaneous crankshaft speed signal, but it is limited by the precision and complexity of the algorithm. It could be a solution by processing one cylinder pressure signal in combination with a crankshaft speed signal. The indicated torque could be estimated through engine speed processing and also from the measure cylinder pressure for the reference cylinder. Measurement results from experiments show that the indicated torque error traces of different cylinder are similar in shape. According to this assumption, the reference cylinder with cylinder pressure signal available can serve as both a parameter calibration information source and an error reduction measure.
Technical Paper

The Study of Operating Efficiency Enhancement of Traction Motor with the Application of a Two-Speed Transmission in an Electric Bus

2014-10-13
2014-01-2891
This paper discusses whether it is possible to improve the motor efficiency by a two-speed transmission in an electric bus, and if so, to what extent. Based on the China Bus Urban Cycle, an 8-meter electric bus was studied via simulation in Matlab/Simulink. The comparison of motor efficiency between two different configurations was made: direct drive and drive through a two-speed transmission. In the first part of the simulation, the speed ratios of the two-speed transmission were chosen as 1.5 and 3.5. The motor efficiency was improved by 1.22% for driving and 1.66% for generation. To find out the maximum improvement and corresponding optimal speed ratio combination, scanning experiment of the lower ratio and upper ratio was conducted in the second part. As much as 1.66% improvement of driving efficiency and 2.20% of regenerating efficiency was achieved.
Journal Article

Closed Loop Control Algorithm of Fuel Cell Output Power for a City Bus

2013-04-08
2013-01-0479
This paper studies a control algorithm for fuel cell/battery city buses. The output power of the fuel cell is controlled by a D.C. converter, and the output ports of the converter and the battery are connected in parallel to supply power for the electric motor. One way to prolong service life is to have the fuel cell system to deliver a steady-state power. However, because of fluctuations in the bus voltage and uncertainness in the D.C. converter, the output power of the fuel cell system changes drastically. A closed-loop control algorithm is necessary to eliminate the errors between the output and target power of the fuel cell system. The algorithm is composed of two parts, the feed forward one and the feedback one. Influences of the bus voltage and D.C. efficiency are compensated automatically in the feedback algorithm by using a PI algorithm. The stability and robustness of the algorithm is analyzed.
Technical Paper

Equilibrium Algorithm Research of Each Cylinder for Common Rail Diesel Based on Self-adaptive Fuzzy Control

2005-04-11
2005-01-0034
Many factors will influence injector's performance, and correlation among them is very complicated after experiments of Electronic-controlled Injector(ECI) were carried out. Equilibrium algorithm based on Self Adaptive Fuzzy Control(SAFC) was put forward to ensure consistency of injectors and remedy shortages of static compensation algorithm. Model of Common Rail System(CRS) was created under MATLAB/SIMULINK. It was showed by experiment results SAFC algorithm had good effects on reducing speed unevenness of each cylinder, and it was found that effect for reducing unevenness when speed was over 1600 rpm was not very remarkable compared with below 1000 rpm for the diesel used for experiments.
Technical Paper

Optimization of a Common Rail Diesel Engine Start-up Process

2004-03-08
2004-01-0119
The high emission level during start-up process of common rail diesel engine is still a problem for ultra low emission control. For the map-based common rail system, engine start-up process goes through the initialization of injection and rail pressure build-up process, so the fuel injection status is not stable. Based on the analysis of the characteristics of rail pressure build-up, engine speed variety and exhausted smoke emission during engine start-up process, it is found that the injection parameters of the initial phase of engine start-up have large effects on the start-up time and smoke emission. To optimize the smoke emission, this paper makes a study on the methods of determining the injection parameters during start-up by means of well-phased investigation of engine speed and orthogonal bench test. The research is carried out on a 6-cylinder 7.8L turbocharged diesel engine equipped with a DENSO ECD-U2 common-rail system.
X